Abstract
Despite significant breakthrough in computational pathology that Medical Hyperspectral Imaging (MHSI) has brought, the asymmetric information in spectral and spatial dimensions pose a primary challenge. In this study, we propose a multi-stage multi-granularity Focus-tuned Learning paradigm for Medical HSI Segmentation. To learn subtle spectral differences while equalizing the spatiospectral feature learning, we design a quadruplet learning pre-training and focus-tuned fine-tuning stages for capturing both disease-level and image-level subtle spectral differences while integrating spatially and spectrally dominant features. We propose an intensifying and weakening strategy throughout all stages. Our method significantly outperforms all competitors in MHSI segmentation, with over 3.5% improvement in DSC. Ablation study further shows our method learns compact spatiospectral features while capturing various levels of spectral differences. Code will be released at https://github.com/DHC233/FL.
H. Dong and R. Zhou—Contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, X., He, K.: Exploring simple siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758 (2021)
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49
Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. Adv. Neural. Inf. Process. Syst. 33, 21271–21284 (2020)
Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2014). arXiv preprint arXiv:1412.6980
Li, Q., Wang, Q., Li, X.: Mixed 2D/3D convolutional network for hyperspectral image super-resolution. Remote sensing 12(10), 1660 (2020)
Li, Q., Wang, Q., Li, X.: Exploring the relationship between 2D/3D convolution for hyperspectral image super-resolution. IEEE Trans. Geosci. Remote Sens. 59(10), 8693–8703 (2021)
Liu, B., Yu, A., Yu, X., Wang, R., Gao, K., Guo, W.: Deep multiview learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 59(9), 7758–7772 (2020)
Lu, G., et al.: Detection of head and neck cancer in surgical specimens using quantitative hyperspectral imaging. Clin. Cancer Res. 23(18), 5426–5436 (2017)
Myasnikov, E.: Embedding spatial context into spectral angle based nonlinear mapping for hyperspectral image analysis. In: Chmielewski, L.J., Kozera, R., Orłowski, A., Wojciechowski, K., Bruckstein, A.M., Petkov, N. (eds.) ICCVG 2018. LNCS, vol. 11114, pp. 263–274. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00692-1_23
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115, 211–252 (2015)
Tang, Y., et al.: Self-supervised pre-training of swin transformers for 3D medical image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20730–20740 (2022)
Wang, Q., et al.: Identification of melanoma from hyperspectral pathology image using 3D convolutional networks. IEEE Trans. Med. Imaging 40(1), 218–227 (2020)
Wang, Y., et al.: Revisiting the transferability of supervised pretraining: an MLP perspective. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9183–9193 (2022)
Xie, X., Jin, T., Yun, B., Li, Q., Wang, Y.: Exploring hyperspectral histopathology image segmentation from a deformable perspective. In: Proceedings of the 31st ACM International Conference on Multimedia, pp. 242–251 (2023)
Xie, X., Wang, Y., Li, Q.: S\( ^{\text{3}}\)r: self-supervised spectral regression for hyperspectral histopathology image classification. In: Proceedings of MICCAI (2022)
Yun, B., et al.: SpecTr: spectral transformer for microscopic hyperspectral pathology image segmentation. IEEE Trans. Circ. Syst. Video Technol. 34(6), 4610–4624 (2023)
Yun, B., Li, Q., Mitrofanova, L., Zhou, C., Wang, Y.: Factor space and spectrum for medical hyperspectral image segmentation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention - MICCAI 2023. MICCAI 2023. LNCS, vol. 14223, pp. 152–162. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43901-8_15
Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow twins: self-supervised learning via redundancy reduction. In: International Conference on Machine Learning, pp. 12310–12320. PMLR (2021)
Zhang, Q., Li, Q., Yu, G., Sun, L., Zhou, M., Chu, J.: A multidimensional choledoch database and benchmarks for cholangiocarcinoma diagnosis. IEEE Access 7, 149414–149421 (2019)
Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: Deformable transformers for end-to-end object detection (2020). arXiv preprint arXiv:2010.04159
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant No. 62101191), Shanghai Natural Science Foundation (Grant No. 21ZR1420800), and the Science and Technology Commission of Shanghai Municipality (Grant No. 22DZ2229004).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Dong, H. et al. (2024). Multi-stage Multi-granularity Focus-Tuned Learning Paradigm for Medical HSI Segmentation. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15008. Springer, Cham. https://doi.org/10.1007/978-3-031-72111-3_43
Download citation
DOI: https://doi.org/10.1007/978-3-031-72111-3_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72110-6
Online ISBN: 978-3-031-72111-3
eBook Packages: Computer ScienceComputer Science (R0)