Skip to main content

Multi-stage Multi-granularity Focus-Tuned Learning Paradigm for Medical HSI Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15008))

  • 1943 Accesses

Abstract

Despite significant breakthrough in computational pathology that Medical Hyperspectral Imaging (MHSI) has brought, the asymmetric information in spectral and spatial dimensions pose a primary challenge. In this study, we propose a multi-stage multi-granularity Focus-tuned Learning paradigm for Medical HSI Segmentation. To learn subtle spectral differences while equalizing the spatiospectral feature learning, we design a quadruplet learning pre-training and focus-tuned fine-tuning stages for capturing both disease-level and image-level subtle spectral differences while integrating spatially and spectrally dominant features. We propose an intensifying and weakening strategy throughout all stages. Our method significantly outperforms all competitors in MHSI segmentation, with over 3.5% improvement in DSC. Ablation study further shows our method learns compact spatiospectral features while capturing various levels of spectral differences. Code will be released at https://github.com/DHC233/FL.

H. Dong and R. Zhou—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, X., He, K.: Exploring simple siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758 (2021)

    Google Scholar 

  2. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  3. Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. Adv. Neural. Inf. Process. Syst. 33, 21271–21284 (2020)

    Google Scholar 

  4. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  5. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2014). arXiv preprint arXiv:1412.6980

  6. Li, Q., Wang, Q., Li, X.: Mixed 2D/3D convolutional network for hyperspectral image super-resolution. Remote sensing 12(10), 1660 (2020)

    Article  Google Scholar 

  7. Li, Q., Wang, Q., Li, X.: Exploring the relationship between 2D/3D convolution for hyperspectral image super-resolution. IEEE Trans. Geosci. Remote Sens. 59(10), 8693–8703 (2021)

    Article  Google Scholar 

  8. Liu, B., Yu, A., Yu, X., Wang, R., Gao, K., Guo, W.: Deep multiview learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 59(9), 7758–7772 (2020)

    Article  Google Scholar 

  9. Lu, G., et al.: Detection of head and neck cancer in surgical specimens using quantitative hyperspectral imaging. Clin. Cancer Res. 23(18), 5426–5436 (2017)

    Article  Google Scholar 

  10. Myasnikov, E.: Embedding spatial context into spectral angle based nonlinear mapping for hyperspectral image analysis. In: Chmielewski, L.J., Kozera, R., Orłowski, A., Wojciechowski, K., Bruckstein, A.M., Petkov, N. (eds.) ICCVG 2018. LNCS, vol. 11114, pp. 263–274. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00692-1_23

    Chapter  Google Scholar 

  11. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  12. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  13. Tang, Y., et al.: Self-supervised pre-training of swin transformers for 3D medical image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20730–20740 (2022)

    Google Scholar 

  14. Wang, Q., et al.: Identification of melanoma from hyperspectral pathology image using 3D convolutional networks. IEEE Trans. Med. Imaging 40(1), 218–227 (2020)

    Article  Google Scholar 

  15. Wang, Y., et al.: Revisiting the transferability of supervised pretraining: an MLP perspective. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9183–9193 (2022)

    Google Scholar 

  16. Xie, X., Jin, T., Yun, B., Li, Q., Wang, Y.: Exploring hyperspectral histopathology image segmentation from a deformable perspective. In: Proceedings of the 31st ACM International Conference on Multimedia, pp. 242–251 (2023)

    Google Scholar 

  17. Xie, X., Wang, Y., Li, Q.: S\( ^{\text{3}}\)r: self-supervised spectral regression for hyperspectral histopathology image classification. In: Proceedings of MICCAI (2022)

    Google Scholar 

  18. Yun, B., et al.: SpecTr: spectral transformer for microscopic hyperspectral pathology image segmentation. IEEE Trans. Circ. Syst. Video Technol. 34(6), 4610–4624 (2023)

    Google Scholar 

  19. Yun, B., Li, Q., Mitrofanova, L., Zhou, C., Wang, Y.: Factor space and spectrum for medical hyperspectral image segmentation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention - MICCAI 2023. MICCAI 2023. LNCS, vol. 14223, pp. 152–162. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43901-8_15

  20. Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow twins: self-supervised learning via redundancy reduction. In: International Conference on Machine Learning, pp. 12310–12320. PMLR (2021)

    Google Scholar 

  21. Zhang, Q., Li, Q., Yu, G., Sun, L., Zhou, M., Chu, J.: A multidimensional choledoch database and benchmarks for cholangiocarcinoma diagnosis. IEEE Access 7, 149414–149421 (2019)

    Article  Google Scholar 

  22. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: Deformable transformers for end-to-end object detection (2020). arXiv preprint arXiv:2010.04159

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 62101191), Shanghai Natural Science Foundation (Grant No. 21ZR1420800), and the Science and Technology Commission of Shanghai Municipality (Grant No. 22DZ2229004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2632 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dong, H. et al. (2024). Multi-stage Multi-granularity Focus-Tuned Learning Paradigm for Medical HSI Segmentation. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15008. Springer, Cham. https://doi.org/10.1007/978-3-031-72111-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72111-3_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72110-6

  • Online ISBN: 978-3-031-72111-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics