Abstract
Automated alveolar cleft defect restoration from cone beam computed tomography (CBCT) remains a challenging task, considering large morphological variations due to inter-subject abnormal maxilla development processes and a small cohort of clinical data. Existing works relied on rigid or deformable registration to borrow bony tissues from an unaffected side or a template for bony tissue filling. However, they lack harmony with the surrounding irregular maxilla structures and are limited when faced with bilateral defects. In this paper, we present a stochastic anomaly simulation algorithm for defected CBCT generation, combating limited clinical data and burdensome volumetric image annotation. By respecting the facial fusion process, the proposed anomaly simulation algorithm enables plausible data generation and relieves gaps from clinical data. We propose a weakly supervised volumetric inpainting framework for cleft defect restoration and maxilla completion, taking advantage of anomaly simulation-based data generation and the recent success of deep image inpainting techniques. Extensive experimental results demonstrate that our approach effectively restores defected CBCTs with performance gains over state-of-the-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alonso, N., Tanikawa, D.Y.S., Freitas, R.d.S., Canan Jr, L., Ozawa, T.O., Rocha, D.L.: Evaluation of maxillary alveolar reconstruction using a resorbable collagen sponge with recombinant human bone morphogenetic protein-2 in cleft lip and palate patients. Tissue Eng. Part C: Methods 16(5), 1183–1189 (2010)
Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein gan. ArXiv abs/1701.07875 (2017)
Avants, B., Epstein, Clgrossman, M., Gee, J.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)
Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: An unsupervised learning model for deformable medical image registration. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 9252–9260 (2018)
Canan Jr, L.W., da Silva Freitas, R., Alonso, N., Tanikawa, D.Y.S., Rocha, D.L., Coelho, J.C.U.: Human bone morphogenetic protein-2 use for maxillary reconstruction in cleft lip and palate patients. J. Craniofacial Surg. 23(6), 1627–1633 (2012)
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3d u-net: learning dense volumetric segmentation from sparse annotation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 424–432. Springer (2016)
De Mulder, D., Cadenas de Llano-Pérula, M., Jacobs, R., Verdonck, A., Willems, G.: Three-dimensional radiological evaluation of secondary alveolar bone grafting in cleft lip and palate patients: a systematic review. Dentomaxillofacial Radiol. 48(1), 20180047 (2019)
Dickinson, B.P., Ashley, R.K., Wasson, K.L., OHara, C., Gabbay, J., Heller, J.B., Bradley, J.P.: Reduced morbidity and improved healing with bone morphogenic protein-2 in older patients with alveolar cleft defects. Plastic Reconstructive Surg. 121(1), 209–217 (2008)
Feng, B., Jiang, M., Xu, X., Li, J.: A new method of volumetric assessment of alveolar bone grafting for cleft patients using cone beam computed tomography. Oral. Surg. Oral. Med. Oral. Pathol. Oral Radiol. 124(2), e171–e182 (2017)
Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. (TOG) 36, 1–14 (2017)
Janssen, N.G., Schreurs, R., Bittermann, G.K., Borstlap, W.A., Koole, R., Meijer, G.J., Maal, T.J.: A novel semi-automatic segmentation protocol for volumetric assessment of alveolar cleft grafting procedures. J. Cranio-Maxillofacial Surg. 45(5), 685–689 (2017)
Linderup, B.W., Küseler, A., Jensen, J., Cattaneo, P.M.: A novel semiautomatic technique for volumetric assessment of the alveolar bone defect using cone beam computed tomography. Cleft Palate Craniofac. J. 52(3), 47–55 (2015)
Liu, H., Jiang, B., Song, Y., Huang, W., Yang, C.: Rethinking image inpainting via a mutual encoder-decoder with feature equalizations. In: European Conference on Computer Vision (2020)
Morais, A., Egger, J., Alves, V.: Automated computer-aided design of cranial implants using a deep volumetric convolutional denoising autoencoder. In: Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST’19 2019. AISC, vol. 932, pp. 151–160. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16187-3_15
Nagashima, H., Sakamoto, Y., Ogata, H., Miyamoto, J., Yazawa, M., Kishi, K.: Evaluation of bone volume after secondary bone grafting in unilateral alveolar cleft using computer-aided engineering. Cleft Palate Craniofac. J. 51(6), 665–668 (2014)
Ozawa, T., Omura, S., Fukuyama, E., Matsui, Y., Torikai, K., Fujita, K.: Factors influencing secondary alveolar bone grafting in cleft lip and palate patients: prospective analysis using ct image analyzer. Cleft Palate Craniofac. J. 44(3), 286–291 (2007)
Shawky, H., Seifeldin, S.A.: Does platelet-rich fibrin enhance bone quality and quantity of alveolar cleft reconstruction? Cleft Palate Craniofac. J. 53(5), 597–606 (2016)
Shirota, T., Kurabayashi, H., Ogura, H., Seki, K., Maki, K., Shintani, S.: Analysis of bone volume using computer simulation system for secondary bone graft in alveolar cleft. Int. J. Oral Maxillofac. Surg. 39(9), 904–908 (2010)
Stasiak, M., Wojtaszek-Słomińska, A., Racka-Pilszak, B.: Current methods for secondary alveolar bone grafting assessment in cleft lip and palate patients: a systematic review. J. Cranio-Maxillofacial Surg. (2019)
Suvorov, R., et al.: Resolution-robust large mask inpainting with fourier convolutions. In: IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 3172–3182 (2021)
Thirion, J.P.: Image matching as a diffusion process: an analogy with maxwell’s demons. Med. Image Anal. 2(3), 243–60 (1998)
Xi, T., Schreurs, R., Heerink, W.J., Berge, S.J., Maal, T.J.: A novel region-growing based semi-automatic segmentation protocol for three-dimensional condylar reconstruction using cone beam computed tomography (cbct). PLoS ONE 9(11), e111126 (2014)
Yu, J., Lin, Z.L., Yang, J., Shen, X., Lu, X., Huang, T.: Generative image inpainting with contextual attention. IEEE Conference on Computer Vision and Pattern Recognition, pp. 5505–5514 (2018)
Yu, J., Lin, Z.L., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated convolution. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4470–4479 (2018)
Zeng, Y., Fu, J., Chao, H., Guo, B.: Aggregated contextual transformations for high-resolution image inpainting. IEEE Trans. Visualization Comput. Graph. (2021)
Acknowledgments
This work was supported in part by National Natural Science Foundation of China under Grant 62272011, 61876008, and 82071172, Beijing Natural Science Foundation 7232337.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Guo, Y., Pei, Y., Chen, S., Zhou, Zb., Xu, T., Zha, H. (2024). Stochastic Anomaly Simulation for Maxilla Completion from Cone-Beam Computed Tomography. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15008. Springer, Cham. https://doi.org/10.1007/978-3-031-72111-3_63
Download citation
DOI: https://doi.org/10.1007/978-3-031-72111-3_63
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72110-6
Online ISBN: 978-3-031-72111-3
eBook Packages: Computer ScienceComputer Science (R0)