Skip to main content

Stochastic Anomaly Simulation for Maxilla Completion from Cone-Beam Computed Tomography

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Automated alveolar cleft defect restoration from cone beam computed tomography (CBCT) remains a challenging task, considering large morphological variations due to inter-subject abnormal maxilla development processes and a small cohort of clinical data. Existing works relied on rigid or deformable registration to borrow bony tissues from an unaffected side or a template for bony tissue filling. However, they lack harmony with the surrounding irregular maxilla structures and are limited when faced with bilateral defects. In this paper, we present a stochastic anomaly simulation algorithm for defected CBCT generation, combating limited clinical data and burdensome volumetric image annotation. By respecting the facial fusion process, the proposed anomaly simulation algorithm enables plausible data generation and relieves gaps from clinical data. We propose a weakly supervised volumetric inpainting framework for cleft defect restoration and maxilla completion, taking advantage of anomaly simulation-based data generation and the recent success of deep image inpainting techniques. Extensive experimental results demonstrate that our approach effectively restores defected CBCTs with performance gains over state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alonso, N., Tanikawa, D.Y.S., Freitas, R.d.S., Canan Jr, L., Ozawa, T.O., Rocha, D.L.: Evaluation of maxillary alveolar reconstruction using a resorbable collagen sponge with recombinant human bone morphogenetic protein-2 in cleft lip and palate patients. Tissue Eng. Part C: Methods 16(5), 1183–1189 (2010)

    Google Scholar 

  2. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein gan. ArXiv abs/1701.07875 (2017)

    Google Scholar 

  3. Avants, B., Epstein, Clgrossman, M., Gee, J.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)

    Google Scholar 

  4. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: An unsupervised learning model for deformable medical image registration. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 9252–9260 (2018)

    Google Scholar 

  5. Canan Jr, L.W., da Silva Freitas, R., Alonso, N., Tanikawa, D.Y.S., Rocha, D.L., Coelho, J.C.U.: Human bone morphogenetic protein-2 use for maxillary reconstruction in cleft lip and palate patients. J. Craniofacial Surg. 23(6), 1627–1633 (2012)

    Google Scholar 

  6. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3d u-net: learning dense volumetric segmentation from sparse annotation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 424–432. Springer (2016)

    Google Scholar 

  7. De Mulder, D., Cadenas de Llano-Pérula, M., Jacobs, R., Verdonck, A., Willems, G.: Three-dimensional radiological evaluation of secondary alveolar bone grafting in cleft lip and palate patients: a systematic review. Dentomaxillofacial Radiol. 48(1), 20180047 (2019)

    Google Scholar 

  8. Dickinson, B.P., Ashley, R.K., Wasson, K.L., OHara, C., Gabbay, J., Heller, J.B., Bradley, J.P.: Reduced morbidity and improved healing with bone morphogenic protein-2 in older patients with alveolar cleft defects. Plastic Reconstructive Surg. 121(1), 209–217 (2008)

    Google Scholar 

  9. Feng, B., Jiang, M., Xu, X., Li, J.: A new method of volumetric assessment of alveolar bone grafting for cleft patients using cone beam computed tomography. Oral. Surg. Oral. Med. Oral. Pathol. Oral Radiol. 124(2), e171–e182 (2017)

    Article  Google Scholar 

  10. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. (TOG) 36, 1–14 (2017)

    Article  Google Scholar 

  11. Janssen, N.G., Schreurs, R., Bittermann, G.K., Borstlap, W.A., Koole, R., Meijer, G.J., Maal, T.J.: A novel semi-automatic segmentation protocol for volumetric assessment of alveolar cleft grafting procedures. J. Cranio-Maxillofacial Surg. 45(5), 685–689 (2017)

    Article  Google Scholar 

  12. Linderup, B.W., Küseler, A., Jensen, J., Cattaneo, P.M.: A novel semiautomatic technique for volumetric assessment of the alveolar bone defect using cone beam computed tomography. Cleft Palate Craniofac. J. 52(3), 47–55 (2015)

    Article  Google Scholar 

  13. Liu, H., Jiang, B., Song, Y., Huang, W., Yang, C.: Rethinking image inpainting via a mutual encoder-decoder with feature equalizations. In: European Conference on Computer Vision (2020)

    Google Scholar 

  14. Morais, A., Egger, J., Alves, V.: Automated computer-aided design of cranial implants using a deep volumetric convolutional denoising autoencoder. In: Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST’19 2019. AISC, vol. 932, pp. 151–160. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16187-3_15

    Chapter  Google Scholar 

  15. Nagashima, H., Sakamoto, Y., Ogata, H., Miyamoto, J., Yazawa, M., Kishi, K.: Evaluation of bone volume after secondary bone grafting in unilateral alveolar cleft using computer-aided engineering. Cleft Palate Craniofac. J. 51(6), 665–668 (2014)

    Article  Google Scholar 

  16. Ozawa, T., Omura, S., Fukuyama, E., Matsui, Y., Torikai, K., Fujita, K.: Factors influencing secondary alveolar bone grafting in cleft lip and palate patients: prospective analysis using ct image analyzer. Cleft Palate Craniofac. J. 44(3), 286–291 (2007)

    Article  Google Scholar 

  17. Shawky, H., Seifeldin, S.A.: Does platelet-rich fibrin enhance bone quality and quantity of alveolar cleft reconstruction? Cleft Palate Craniofac. J. 53(5), 597–606 (2016)

    Article  Google Scholar 

  18. Shirota, T., Kurabayashi, H., Ogura, H., Seki, K., Maki, K., Shintani, S.: Analysis of bone volume using computer simulation system for secondary bone graft in alveolar cleft. Int. J. Oral Maxillofac. Surg. 39(9), 904–908 (2010)

    Article  Google Scholar 

  19. Stasiak, M., Wojtaszek-Słomińska, A., Racka-Pilszak, B.: Current methods for secondary alveolar bone grafting assessment in cleft lip and palate patients: a systematic review. J. Cranio-Maxillofacial Surg. (2019)

    Google Scholar 

  20. Suvorov, R., et al.: Resolution-robust large mask inpainting with fourier convolutions. In: IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 3172–3182 (2021)

    Google Scholar 

  21. Thirion, J.P.: Image matching as a diffusion process: an analogy with maxwell’s demons. Med. Image Anal. 2(3), 243–60 (1998)

    Article  Google Scholar 

  22. Xi, T., Schreurs, R., Heerink, W.J., Berge, S.J., Maal, T.J.: A novel region-growing based semi-automatic segmentation protocol for three-dimensional condylar reconstruction using cone beam computed tomography (cbct). PLoS ONE 9(11), e111126 (2014)

    Article  Google Scholar 

  23. Yu, J., Lin, Z.L., Yang, J., Shen, X., Lu, X., Huang, T.: Generative image inpainting with contextual attention. IEEE Conference on Computer Vision and Pattern Recognition, pp. 5505–5514 (2018)

    Google Scholar 

  24. Yu, J., Lin, Z.L., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated convolution. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4470–4479 (2018)

    Google Scholar 

  25. Zeng, Y., Fu, J., Chao, H., Guo, B.: Aggregated contextual transformations for high-resolution image inpainting. IEEE Trans. Visualization Comput. Graph. (2021)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Natural Science Foundation of China under Grant 62272011, 61876008, and 82071172, Beijing Natural Science Foundation 7232337.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuru Pei .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 4651 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, Y., Pei, Y., Chen, S., Zhou, Zb., Xu, T., Zha, H. (2024). Stochastic Anomaly Simulation for Maxilla Completion from Cone-Beam Computed Tomography. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15008. Springer, Cham. https://doi.org/10.1007/978-3-031-72111-3_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72111-3_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72110-6

  • Online ISBN: 978-3-031-72111-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics