Skip to main content

Comprehensive Generative Replay for Task-Incremental Segmentation with Concurrent Appearance and Semantic Forgetting

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15008))

  • 2035 Accesses

Abstract

Generalist segmentation models are increasingly favored for diverse tasks involving various objects from different image sources. Task-Incremental Learning (TIL) offers a privacy-preserving training paradigm using tasks arriving sequentially, instead of gathering them due to strict data sharing policies. However, the task evolution can span a wide scope that involves shifts in both image appearance and segmentation semantics with intricate correlation, causing concurrent appearance and semantic forgetting. To solve this issue, we propose a Comprehensive Generative Replay (CGR) framework that restores appearance and semantic knowledge by synthesizing image-mask pairs to mimic past task data, which focuses on two aspects: modeling image-mask correspondence and promoting scalability for diverse tasks. Specifically, we introduce a novel Bayesian Joint Diffusion (BJD) model for high-quality synthesis of image-mask pairs with their correspondence explicitly preserved by conditional denoising. Furthermore, we develop a Task-Oriented Adapter (TOA) that recalibrates prompt embeddings to modulate the diffusion model, making the data synthesis compatible with different tasks. Experiments on incremental tasks (cardiac, fundus and prostate segmentation) show its clear advantage for alleviating concurrent appearance and semantic forgetting. Code is available at https://github.com/jingyzhang/CGR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bao, F., et al.: One transformer fits all distributions in multi-modal diffusion at scale. arXiv preprint arXiv:2303.06555 (2023)

  2. Campello, V.M., et al.: Multi-centre, multi-vendor and multi-disease cardiac segmentation: the m &ms challenge. IEEE Trans. Med. Imaging 40(12), 3543–3554 (2021)

    Article  Google Scholar 

  3. Chen, B., Thandiackal, K., Pati, P., Goksel, O.: Generative appearance replay for continual unsupervised domain adaptation. arXiv preprint arXiv:2301.01211 (2023)

  4. Douillard, A., Chen, Y., Dapogny, A., Cord, M.: Plop: learning without forgetting for continual semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4040–4050 (2021)

    Google Scholar 

  5. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)

    Google Scholar 

  6. Ho, J., Salimans, T.: Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598 (2022)

  7. Huang, Z., et al.: Stu-net: scalable and transferable medical image segmentation models empowered by large-scale supervised pre-training. arXiv preprint arXiv:2304.06716 (2023)

  8. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Nat. Acad. Sci. 114(13), 3521–3526 (2017)

    Article  MathSciNet  Google Scholar 

  9. Li, K., Yu, L., Heng, P.A.: Domain-incremental cardiac image segmentation with style-oriented replay and domain-sensitive feature whitening. IEEE Trans. Med. Imaging 42(3), 570–581 (2022)

    Article  Google Scholar 

  10. Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2935–2947 (2017)

    Article  Google Scholar 

  11. Liu, J., et al.: Clip-driven universal model for organ segmentation and tumor detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 21152–21164 (2023)

    Google Scholar 

  12. Liu, P., et al.: Learning incrementally to segment multiple organs in a ct image. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, pp. 714–724. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-16440-8_68

  13. Liu, Q., Dou, Q., Yu, L., Heng, P.A.: Ms-net: multi-site network for improving prostate segmentation with heterogeneous mri data. IEEE Trans. Med. Imaging 39(9), 2713–2724 (2020)

    Article  Google Scholar 

  14. Liu, X., Shih, H.A., Xing, F., Santarnecchi, E., El Fakhri, G., Woo, J.: Incremental learning for heterogeneous structure segmentation in brain tumor mri. In: Greenspan, H., et al. (eds.) MICCAI 2023, vol. 14221, pp. 46–56. Springer, Heidleberg (2023). https://doi.org/10.1007/978-3-031-43895-0_5

    Chapter  Google Scholar 

  15. Ma, J., He, Y., Li, F., Han, L., You, C., Wang, B.: Segment anything in medical images. Nat. Commun. 15(1), 654 (2024)

    Article  Google Scholar 

  16. Müller-Franzes, G., et al.: Diffusion probabilistic models beat gans on medical images. arXiv preprint arXiv:2212.07501 (2022)

  17. Price, W.N., Cohen, I.G.: Privacy in the age of medical big data. Nat. Med. 25(1), 37–43 (2019)

    Article  Google Scholar 

  18. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  19. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)

    Google Scholar 

  20. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502 (2020)

  21. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  22. Wang, S., Yu, L., Li, K., Yang, X., Fu, C.W., Heng, P.A.: Dofe: domain-oriented feature embedding for generalizable fundus image segmentation on unseen datasets. IEEE Trans. Med. Imaging 39(12), 4237–4248 (2020)

    Article  Google Scholar 

  23. Wu, H., Wang, Z., Zhao, Z., Chen, C., Qin, J.: Continual nuclei segmentation via prototype-wise relation distillation and contrastive learning. IEEE Trans. Med. Imaging 42, 3794–3804 (2023)

    Article  Google Scholar 

  24. Zhang, J., et al.: S3r: shape and semantics-based selective regularization for explainable continual segmentation across multiple sites. IEEE Trans. Med. Imaging 42, 2539–2551 (2023)

    Article  Google Scholar 

  25. Zhang, J., et al.: Jointnet: extending text-to-image diffusion for dense distribution modeling. arXiv preprint arXiv:2310.06347 (2023)

  26. Zhang, J., et al.: Learning towards synchronous network memorizability and generalizability for continual segmentation across multiple sites. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, vol. 13435, pp. 380–390. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-16443-9_37

    Chapter  Google Scholar 

  27. Zhao, D., Yuan, B., Shi, Z.: Inherit with distillation and evolve with contrast: exploring class incremental semantic segmentation without exemplar memory. IEEE Trans. Pattern Anal. Mach. Intell. 45, 11932–11947 (2023)

    Article  Google Scholar 

Download references

Acknowledgments

This research is partially supported by Specific Project of Shanghai Jiao Tong University for “Invigorating Inner Mongolia through Science and Technology" (2022XYJG0001-01–17), the funding from Star of SJTU Programme, a grant from the Researh Grants Council of the Hong Kong Special Administrative Region, China (Project No.: T45-401/22-N), and a grant from Hong Kong Innovation and Technology Fund (Project No.: MHP/085/21).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingyang Zhang or Lixu Gu .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, W., Zhang, J., Heng, PA., Gu, L. (2024). Comprehensive Generative Replay for Task-Incremental Segmentation with Concurrent Appearance and Semantic Forgetting. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15008. Springer, Cham. https://doi.org/10.1007/978-3-031-72111-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72111-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72110-6

  • Online ISBN: 978-3-031-72111-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics