Abstract
Image segmentation often involves objects of interest that are biologically known to be convex shaped. While typical deep-neural-networks (DNNs) for object segmentation ignore object properties relating to shape, the DNNs that employ shape information fail to enforce hard constraints on shape. We design a brand-new DNN framework that guarantees convexity of the output object-segment by leveraging fundamental geometrical insights into the boundaries of convex-shaped objects. Moreover, we design our framework to build on typical existing DNNs for per-pixel segmentation, while maintaining simplicity in loss-term formulation and maintaining frugality in model size and training time. Results using six publicly available datasets demonstrates that our DNN framework, with little overheads, provides significant benefits in the robust segmentation of convex objects in out-of-distribution images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Almazroa, A., et al.: Retinal fundus images for glaucoma analysis: the riga dataset. In: Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications. vol. 10579, p. 105790B (2018)
Andreopoulos, A., Tsotsos, J.: Efficient and generalizable statistical models of shape and appearance for analysis of cardiac mri. Med. Image Anal. 12(3), 335–357 (2008)
Bajwa, M.N., Singh, G.A.P., Neumeier, W., Malik, M.I., Dengel, A., Ahmed, S.: G1020: a benchmark retinal fundus image dataset for computer-aided glaucoma detection. In: IJCNN, pp. 1–7 (2020)
Bernard, O., Lalande, A., et al.: Deep learning techniques for automatic mri cardiac multi-structures segmentation and diagnosis: Is the problem solved? IEEE Trans. Med. Imag. 37(11), 2514–2525 (2018)
Busemann, H.: The Gometry of Geodesics. Elsevier Science, Amsterdam (1955)
Clough, J., Byrne, N., Oksuz, I., Zimmer, V., Schnabel, J., King, A.: A topological loss function for deep-learning based image segmentation using persistent homology. IEEE Trans. Pattern Anal. Mach. Intell. 44(12), 8766–8778 (2022)
Epstein, F.: MRI of left ventricular function. J. Nucl. Cardiol. 14(5), 729–744 (2007)
Gaikwad, A.V., Varma, H., Awate, S.P.: Deep variational segmentation of topology-constrained object sets, with correlated uncertainty models, for robustness to degradations. In: 2023 IEEE International Conference on Image Processing (ICIP), pp. 2195–2199 (2023)
Gulshan, V., Rother, C., Criminisi, A., Blake, A., Zisserman, A.: Geodesic star convexity for interactive image segmentation. In: IEEE Computer Vision on Pattern Recognition, pp. 3129–3136 (2010)
Hatamizadeh, A., Terzopoulos, D., Myronenko, A.: End-to-End boundary aware networks for medical image segmentation. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 187–194. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_22
Hu, X., Li, F., Samaras, D., Chen, C.: Topology-preserving deep image segmentation. Adv. Neural Inf. Process. Syst. 32 (2019)
Jha, D., et al.: ResUNet++: an advanced architecture for medical image segmentation. In: Proceedings of IEEE International Symposium Multimedia, pp. 225–230 (2019)
Lee, M., Petersen, K., Pawlowski, N., Glocker, B., Schaap, M.: TeTrIS: template transformer networks for image segmentation with shape priors. IEEE Trans. Med. Imag. 38(11), 2596–2606 (2019)
Lin, A., Chen, B., Xu, J., Zhang, Z., Lu, G., Zhang, D.: DS-TransUNet: dual swin transformer U-Net for medical image segmentation. IEEE Trans. Instr. Meas. 71, 1–15 (2022)
Lu, S.: Accurate and efficient optic disc detection and segmentation by a circular transformation. IEEE TMI 30, 2126–2133 (2011)
Mirikharaji, Z., Hamarneh, G.: Star shape prior in fully convolutional networks for skin lesion segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 737–745. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_84
Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. In: Medical Imaging on Deep Learning (2018)
Petitjean, C., Dacher, J.N.: A review of segmentation methods in short axis cardiac MR images. Med. Imag. Anal. 15(2), 169–184 (2011)
Qin, X., Zhang, Z., Huang, C., Gao, C., Dehghan, M., Jagersand, M.: BASNet: boundary-aware salient object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 7471–7481 (2019)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Royer, L., Richmond, D., Rother, C., Andres, B., Kainmueller, D.: Convexity shape constraints for image segmentation. In: IEEE Computer Vision and Pattern Recognition, pp. 402–410 (2016)
Sanner, A., Gonzalez, C., Mukhopadhyay, A.: How reliable are out-of-distribution generalization methods for medical image segmentation? In: DAGM German Conference on Pattern Recognition, pp. 604–617 (2021)
Shaaf, Z., Jamil, M., Ambar, R., Alattab, A., Yahya, A., Asiri, Y.: Automatic left ventricle segmentation from short-axis cardiac MRI images based on fully convolutional neural network. Diagnostics (Basel) 12(2), 414 (2022)
Shigwan, S., Gaikwad, A., Awate, S.: Object segmentation with deep neural nets coupled with a shape prior, when learning from a training set of limited quality and small size. In: IEEE International Symposium on Biomedical Imaging, pp. 1149–1153 (2020)
Shit, S., et al.: clDice - a novel topology-preserving loss function for tubular structure segmentation. In: IEEE Computer Vision and Pattern Recognition, pp. 16555–16564 (2021)
Smith, T., Zhang, S., Erkanli, A., Frush, D., Samei, E.: Variability in image quality and radiation dose within and across 97 medical facilities. J. Med. Imag. 8, 52105 (2021)
Suinesiaputra, A., et al.: A collaborative resource to build consensus for automated left ventricular segmentation of cardiac mr images. Med. Image Anal. 18(1), 50–62 (2014)
Sun, F., Luo, Z., Li, S.: Boundary difference over union loss for medical image segmentation. In: Greenspan, H., et al. (eds.) MICCAI 2023, vol. 14223, pp. 292–301. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-43901-8_28
Tasman, W., Jaeger, E.: Duane’s Ophthalmology. Lippincott Williams (2013)
Varma, H., Gaikwad, A.V., Awate, S.P.: Adversarial training with multiscale boundary-prediction dnn for robust topologically-constrained segmentation in ood images. In: 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), pp. 1–5 (2023)
Wang, B., Gu, X., Fan, C., Xie, H., Zhang, S., Tian, X., Gu, L.: Sparse group composition for robust left ventricular epicardium segmentation. Comput. Med. Imaging Graph. 46, 56–63 (2015)
Wang, L., et al.: Automated segmentation of the optic disc from fundus images using an asymmetric deep learning network. Pattern Recogn. 112, 107810 (2021)
Wu, J., et al.: Oval shape constraint based optic disc and cup segmentation in fundus photographs. In: British Machine on Vision Conference (2019)
Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual U-Net. IEEE Geosc. Rem. Send. Letters 15(5), 749–753 (2018)
Zhang, Z., et al.: Origa-light: an online retinal fundus image database for glaucoma analysis and research. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 3065–3068 (2010)
Zhuo, J., Gullapalli, R.: AAPM/RSNA physics tutorial for residents: MR artifacts, safety, and quality control. Radiographics 26(1), 275–297 (2006)
Acknowledgments
Supported by the Center for Machine Intelligence and Data Science (CMInDS) fellowship and the Prime Minister’s Research Fellowship.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Pal, J.B., Awate, S.P. (2024). Convex Segments for Convex Objects Using DNN Boundary Tracing and Graduated Optimization. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15008. Springer, Cham. https://doi.org/10.1007/978-3-031-72111-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-72111-3_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72110-6
Online ISBN: 978-3-031-72111-3
eBook Packages: Computer ScienceComputer Science (R0)