Skip to main content

Convex Segments for Convex Objects Using DNN Boundary Tracing and Graduated Optimization

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15008))

  • 1720 Accesses

Abstract

Image segmentation often involves objects of interest that are biologically known to be convex shaped. While typical deep-neural-networks (DNNs) for object segmentation ignore object properties relating to shape, the DNNs that employ shape information fail to enforce hard constraints on shape. We design a brand-new DNN framework that guarantees convexity of the output object-segment by leveraging fundamental geometrical insights into the boundaries of convex-shaped objects. Moreover, we design our framework to build on typical existing DNNs for per-pixel segmentation, while maintaining simplicity in loss-term formulation and maintaining frugality in model size and training time. Results using six publicly available datasets demonstrates that our DNN framework, with little overheads, provides significant benefits in the robust segmentation of convex objects in out-of-distribution images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Almazroa, A., et al.: Retinal fundus images for glaucoma analysis: the riga dataset. In: Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications. vol. 10579, p. 105790B (2018)

    Google Scholar 

  2. Andreopoulos, A., Tsotsos, J.: Efficient and generalizable statistical models of shape and appearance for analysis of cardiac mri. Med. Image Anal. 12(3), 335–357 (2008)

    Article  Google Scholar 

  3. Bajwa, M.N., Singh, G.A.P., Neumeier, W., Malik, M.I., Dengel, A., Ahmed, S.: G1020: a benchmark retinal fundus image dataset for computer-aided glaucoma detection. In: IJCNN, pp. 1–7 (2020)

    Google Scholar 

  4. Bernard, O., Lalande, A., et al.: Deep learning techniques for automatic mri cardiac multi-structures segmentation and diagnosis: Is the problem solved? IEEE Trans. Med. Imag. 37(11), 2514–2525 (2018)

    Article  Google Scholar 

  5. Busemann, H.: The Gometry of Geodesics. Elsevier Science, Amsterdam (1955)

    Google Scholar 

  6. Clough, J., Byrne, N., Oksuz, I., Zimmer, V., Schnabel, J., King, A.: A topological loss function for deep-learning based image segmentation using persistent homology. IEEE Trans. Pattern Anal. Mach. Intell. 44(12), 8766–8778 (2022)

    Article  Google Scholar 

  7. Epstein, F.: MRI of left ventricular function. J. Nucl. Cardiol. 14(5), 729–744 (2007)

    Article  Google Scholar 

  8. Gaikwad, A.V., Varma, H., Awate, S.P.: Deep variational segmentation of topology-constrained object sets, with correlated uncertainty models, for robustness to degradations. In: 2023 IEEE International Conference on Image Processing (ICIP), pp. 2195–2199 (2023)

    Google Scholar 

  9. Gulshan, V., Rother, C., Criminisi, A., Blake, A., Zisserman, A.: Geodesic star convexity for interactive image segmentation. In: IEEE Computer Vision on Pattern Recognition, pp. 3129–3136 (2010)

    Google Scholar 

  10. Hatamizadeh, A., Terzopoulos, D., Myronenko, A.: End-to-End boundary aware networks for medical image segmentation. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 187–194. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_22

    Chapter  Google Scholar 

  11. Hu, X., Li, F., Samaras, D., Chen, C.: Topology-preserving deep image segmentation. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  12. Jha, D., et al.: ResUNet++: an advanced architecture for medical image segmentation. In: Proceedings of IEEE International Symposium Multimedia, pp. 225–230 (2019)

    Google Scholar 

  13. Lee, M., Petersen, K., Pawlowski, N., Glocker, B., Schaap, M.: TeTrIS: template transformer networks for image segmentation with shape priors. IEEE Trans. Med. Imag. 38(11), 2596–2606 (2019)

    Article  Google Scholar 

  14. Lin, A., Chen, B., Xu, J., Zhang, Z., Lu, G., Zhang, D.: DS-TransUNet: dual swin transformer U-Net for medical image segmentation. IEEE Trans. Instr. Meas. 71, 1–15 (2022)

    Google Scholar 

  15. Lu, S.: Accurate and efficient optic disc detection and segmentation by a circular transformation. IEEE TMI 30, 2126–2133 (2011)

    Google Scholar 

  16. Mirikharaji, Z., Hamarneh, G.: Star shape prior in fully convolutional networks for skin lesion segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 737–745. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_84

    Chapter  Google Scholar 

  17. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. In: Medical Imaging on Deep Learning (2018)

    Google Scholar 

  18. Petitjean, C., Dacher, J.N.: A review of segmentation methods in short axis cardiac MR images. Med. Imag. Anal. 15(2), 169–184 (2011)

    Article  Google Scholar 

  19. Qin, X., Zhang, Z., Huang, C., Gao, C., Dehghan, M., Jagersand, M.: BASNet: boundary-aware salient object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 7471–7481 (2019)

    Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Royer, L., Richmond, D., Rother, C., Andres, B., Kainmueller, D.: Convexity shape constraints for image segmentation. In: IEEE Computer Vision and Pattern Recognition, pp. 402–410 (2016)

    Google Scholar 

  22. Sanner, A., Gonzalez, C., Mukhopadhyay, A.: How reliable are out-of-distribution generalization methods for medical image segmentation? In: DAGM German Conference on Pattern Recognition, pp. 604–617 (2021)

    Google Scholar 

  23. Shaaf, Z., Jamil, M., Ambar, R., Alattab, A., Yahya, A., Asiri, Y.: Automatic left ventricle segmentation from short-axis cardiac MRI images based on fully convolutional neural network. Diagnostics (Basel) 12(2), 414 (2022)

    Article  Google Scholar 

  24. Shigwan, S., Gaikwad, A., Awate, S.: Object segmentation with deep neural nets coupled with a shape prior, when learning from a training set of limited quality and small size. In: IEEE International Symposium on Biomedical Imaging, pp. 1149–1153 (2020)

    Google Scholar 

  25. Shit, S., et al.: clDice - a novel topology-preserving loss function for tubular structure segmentation. In: IEEE Computer Vision and Pattern Recognition, pp. 16555–16564 (2021)

    Google Scholar 

  26. Smith, T., Zhang, S., Erkanli, A., Frush, D., Samei, E.: Variability in image quality and radiation dose within and across 97 medical facilities. J. Med. Imag. 8, 52105 (2021)

    Article  Google Scholar 

  27. Suinesiaputra, A., et al.: A collaborative resource to build consensus for automated left ventricular segmentation of cardiac mr images. Med. Image Anal. 18(1), 50–62 (2014)

    Article  Google Scholar 

  28. Sun, F., Luo, Z., Li, S.: Boundary difference over union loss for medical image segmentation. In: Greenspan, H., et al. (eds.) MICCAI 2023, vol. 14223, pp. 292–301. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-43901-8_28

    Chapter  Google Scholar 

  29. Tasman, W., Jaeger, E.: Duane’s Ophthalmology. Lippincott Williams (2013)

    Google Scholar 

  30. Varma, H., Gaikwad, A.V., Awate, S.P.: Adversarial training with multiscale boundary-prediction dnn for robust topologically-constrained segmentation in ood images. In: 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), pp. 1–5 (2023)

    Google Scholar 

  31. Wang, B., Gu, X., Fan, C., Xie, H., Zhang, S., Tian, X., Gu, L.: Sparse group composition for robust left ventricular epicardium segmentation. Comput. Med. Imaging Graph. 46, 56–63 (2015)

    Article  Google Scholar 

  32. Wang, L., et al.: Automated segmentation of the optic disc from fundus images using an asymmetric deep learning network. Pattern Recogn. 112, 107810 (2021)

    Article  Google Scholar 

  33. Wu, J., et al.: Oval shape constraint based optic disc and cup segmentation in fundus photographs. In: British Machine on Vision Conference (2019)

    Google Scholar 

  34. Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual U-Net. IEEE Geosc. Rem. Send. Letters 15(5), 749–753 (2018)

    Article  Google Scholar 

  35. Zhang, Z., et al.: Origa-light: an online retinal fundus image database for glaucoma analysis and research. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 3065–3068 (2010)

    Google Scholar 

  36. Zhuo, J., Gullapalli, R.: AAPM/RSNA physics tutorial for residents: MR artifacts, safety, and quality control. Radiographics 26(1), 275–297 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

Supported by the Center for Machine Intelligence and Data Science (CMInDS) fellowship and the Prime Minister’s Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimut B. Pal .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pal, J.B., Awate, S.P. (2024). Convex Segments for Convex Objects Using DNN Boundary Tracing and Graduated Optimization. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15008. Springer, Cham. https://doi.org/10.1007/978-3-031-72111-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72111-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72110-6

  • Online ISBN: 978-3-031-72111-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics