Skip to main content

Feature-Prompting GBMSeg: One-Shot Reference Guided Training-Free Prompt Engineering for Glomerular Basement Membrane Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Assessment of the glomerular basement membrane (GBM) in transmission electron microscopy (TEM) is crucial for diagnosing chronic kidney disease (CKD). The lack of domain-independent automatic segmentation tools for the GBM necessitates an AI-based solution to automate the process. In this study, we introduce GBMSeg, a training-free framework designed to automatically segment the GBM in TEM images guided only by a one-shot annotated reference. Specifically, GBMSeg first exploits the robust feature matching capabilities of the pretrained foundation model to generate initial prompt points, then introduces a series of novel automatic prompt engineering techniques across the feature and physical space to optimize the prompt scheme. Finally, GBMSeg employs a class-agnostic foundation segmentation model with the generated prompt scheme to obtain accurate segmentation results. Experimental results on our collected 2538 TEM images confirm that GBMSeg achieves superior segmentation performance with a Dice similarity coefficient (DSC) of 87.27% using only one labeled reference image in a training-free manner, outperforming recently proposed one-shot or few-shot methods. In summary, GBMSeg introduces a distinctive automatic prompt framework that facilitates robust domain-independent segmentation performance without training, particularly advancing the automatic prompting of foundation segmentation models for medical images. Future work involves automating the thickness measurement of segmented GBM and quantifying pathological indicators, holding significant potential for advancing pathology assessments in clinical applications. The source code is available on https://github.com/SnowRain510/GBMSeg.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cao, L., Lu, Y., Li, C., Yang, W., et al.: Automatic segmentation of pathological glomerular basement membrane in transmission electron microscopy images with random forest stacks. Comput. Math. Methods Med. 2019 (2019)

    Google Scholar 

  2. Fogo, A.B.: Renal pathology. Pediatric Nephrology (2009)

    Google Scholar 

  3. Hong, S., Cho, S., Nam, J., Lin, S., Kim, S.: Cost aggregation with 4D convolutional swin transformer for few-shot segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13689, pp. 108–126. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19818-2_7

    Chapter  Google Scholar 

  4. Huang, W., et al.: Semi-supervised neuron segmentation via reinforced consistency learning. IEEE Trans. Med. Imaging 41(11), 3016–3028 (2022)

    Article  Google Scholar 

  5. Jia, C., et al.: Scaling up visual and vision-language representation learning with noisy text supervision. In: International Conference on Machine Learning, pp. 4904–4916. PMLR (2021)

    Google Scholar 

  6. Kirillov, A., et al.: Segment anything. arXiv preprint arXiv:2304.02643 (2023)

  7. Lin, G., et al.: GCLR: a self-supervised representation learning pretext task for glomerular filtration barrier segmentation in TEM images. Artif. Intell. Med. 102720 (2023)

    Google Scholar 

  8. Liu, D., et al.: PDAM: a panoptic-level feature alignment framework for unsupervised domain adaptive instance segmentation in microscopy images. IEEE Trans. Med. Imaging 40(1), 154–165 (2020)

    Article  Google Scholar 

  9. Liu, Y., Zhu, M., Li, H., Chen, H., Wang, X., Shen, C.: Matcher: segment anything with one shot using all-purpose feature matching. arXiv preprint arXiv:2305.13310 (2023)

  10. Liu, Y., Ji, S.: CleftNet: augmented deep learning for synaptic cleft detection from brain electron microscopy. IEEE Trans. Med. Imaging 40(12), 3507–3518 (2021)

    Article  Google Scholar 

  11. Min, J., Kang, D., Cho, M.: Hypercorrelation squeeze for few-shot segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6941–6952 (2021)

    Google Scholar 

  12. Oquab, M., et al.: DINOv2: learning robust visual features without supervision. arXiv preprint arXiv:2304.07193 (2023)

  13. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  14. Rangayyan, R.M., Kamenetsky, I., Benediktsson, H.: Segmentation and analysis of the glomerular basement membrane in renal biopsy samples using active contours: a pilot study. J. Digit. Imaging 23, 323–331 (2010)

    Article  Google Scholar 

  15. Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: LabelMe: a database and web-based tool for image annotation. Int. J. Comput. Vis. 77(1–3), 157–173 (2008)

    Article  Google Scholar 

  16. Wang, X., Zhang, X., Cao, Y., Wang, W., Shen, C., Huang, T.: SegGPT: towards segmenting everything in context. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1130–1140 (2023)

    Google Scholar 

  17. Wang, Y., et al.: Segmentation and thickness calculation of glomerular basement membrane using RADS-net in glomerular microscopic images. Biomed. Signal Process. Control 88, 105557 (2024)

    Article  Google Scholar 

  18. Wen, J., Lin, G., Zhang, Y., Zhou, Z., Cao, L., Feng, Q.: Semantic segmentation of ultrastructural pathological images of glomerular filtration membrane using deep learning network. Chin J. Med. Phys. 37(2), 195–204 (2019)

    Google Scholar 

  19. Yang, J., Hu, X., Pan, H., Chen, P., Xia, S.: Multi-scale attention network for segmentation of electron dense deposits in glomerular microscopic images. Microsc. Res. Tech. 85(9), 3256–3264 (2022)

    Article  Google Scholar 

  20. Zhang, R., et al.: Personalize segment anything model with one shot. arXiv preprint arXiv:2305.03048 (2023)

  21. Zhuo, L., Wang, H., Chen, D., Lu, H., Zou, G., Li, W.: Alternative renal biopsies: past and present. Int. Urol. Nephrol. 50, 475–479 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 61901292); and the Natural Science Foundation of Shanxi Province, China (Grant Nos. 201901D211080, 202303021211082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfei Wu .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X. et al. (2024). Feature-Prompting GBMSeg: One-Shot Reference Guided Training-Free Prompt Engineering for Glomerular Basement Membrane Segmentation. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15009. Springer, Cham. https://doi.org/10.1007/978-3-031-72114-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72114-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72113-7

  • Online ISBN: 978-3-031-72114-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics