Skip to main content

Lost in Tracking: Uncertainty-Guided Cardiac Cine MRI Segmentation at Right Ventricle Base

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15009))

  • 1844 Accesses

Abstract

Accurate biventricular segmentation of cardiac magnetic resonance (CMR) cine images is essential for the clinical evaluation of heart function. However, compared to left ventricle (LV), right ventricle (RV) segmentation is still more challenging and less reproducible. Degenerate performance frequently occurs at the RV base, where the in-plane anatomical structures are complex (with atria, valve, and aorta) and vary due to the strong interplanar motion. In this work, we propose to address the currently unsolved issues in CMR segmentation, specifically at the RV base, with two strategies: first, we complemented the public resource by reannotating the RV base in the ACDC dataset, with refined delineation of the right ventricle outflow tract (RVOT), under the guidance of an expert cardiologist. Second, we proposed a novel dual encoder U-Net architecture that leverages temporal incoherence to inform the segmentation when interplanar motions occur. The inter-planar motion is characterized by loss-of-tracking, via Bayesian uncertainty of a motion-tracking model. Our experiments showed that our method significantly improved RV base segmentation taking into account temporal incoherence. Furthermore, we investigated the reproducibility of deep learning-based segmentation and showed that the combination of consistent annotation and loss of tracking could enhance the reproducibility of RV segmentation, potentially facilitating a large number of clinical studies focusing on RV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arega, T.W., Legrand, F., Bricq, S., Meriaudeau, F.: Using MRI-specific data augmentation to enhance the segmentation of right ventricle in multi-disease, multi-center and multi-view cardiac MRI. In: Puyol Antón, E., et al. (eds.) STACOM 2021. LNCS, vol. 13131, pp. 250–258. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-93722-5_27

    Chapter  Google Scholar 

  2. Bai, W.: Recurrent neural networks for aortic image sequence segmentation with sparse annotations. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018, Part IV. LNCS, vol. 11073, pp. 586–594. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_67

    Chapter  Google Scholar 

  3. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  4. Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018)

    Article  Google Scholar 

  5. Campello, V.M., et al.: Multi-centre, multi-vendor and multi-disease cardiac segmentation: the M &Ms challenge. IEEE Trans. Med. Imaging 40(12), 3543–3554 (2021)

    Article  Google Scholar 

  6. Chen, T., Fox, E., Guestrin, C.: Stochastic gradient Hamiltonian Monte Carlo. In: International Conference on Machine Learning, pp. 1683–1691. PMLR (2014)

    Google Scholar 

  7. Dong, S., et al.: DeU-net: deformable U-net for 3D cardiac MRI video segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020, Part IV. LNCS, vol. 12264, pp. 98–107. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_10

    Chapter  Google Scholar 

  8. Farré, J., Anderson, R.H., Cabrera, J.A., Sánchez-Quintana, D., Rubio, J.M., Benezet-Mazuecos, J.: Cardiac anatomy for catheter mapping and ablation of arrhythmias. Catheter Ablation Cardiac Arrhythmias 74–102 (2011)

    Google Scholar 

  9. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning [eb/ol]. arXiv preprint arxiv:1506.02142 (2015)

  10. Han, Y., et al.: Ranolazine improves right ventricular function in patients with precapillary pulmonary hypertension: results from a double-blind, randomized, placebo-controlled trial. J. Cardiac Fail. 27(2), 253–257 (2021)

    Article  Google Scholar 

  11. Ho, S., Nihoyannopoulos, P.: Anatomy, echocardiography, and normal right ventricular dimensions. Heart 92(suppl 1), i2–i13 (2006)

    Article  Google Scholar 

  12. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  13. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  14. Kikinis, R., Pieper, S.D., Vosburgh, K.G.: 3D slicer: a platform for subject-specific image analysis, visualization, and clinical support. In: Jolesz, F.A. (ed.) Intraoperative Imaging and Image-Guided Therapy, pp. 277–289. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-7657-3_19

    Chapter  Google Scholar 

  15. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. arxiv e-prints, arXiv preprint arXiv:1612.01474, vol. 5 (2016)

  16. Martín-Isla, C., et al.: Deep learning segmentation of the right ventricle in cardiac MRI: the M &Ms challenge. IEEE J. Biomed. Health Inform. (2023)

    Google Scholar 

  17. Nilsson, D., Sminchisescu, C.: Semantic video segmentation by gated recurrent flow propagation. arXiv preprint arXiv:1612.08871 (2016)

  18. Qin, C., et al.: Joint learning of motion estimation and segmentation for cardiac MR image sequences. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018, Part II. LNCS, vol. 11071, pp. 472–480. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_53

    Chapter  Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Sheehan, F., Redington, A.: The right ventricle: anatomy, physiology and clinical imaging. Heart 94(11), 1510–1515 (2008)

    Article  Google Scholar 

  21. Tao, Q., et al.: Deep learning-based method for fully automatic quantification of left ventricle function from cine MR images: a multivendor, multicenter study. Radiology 290(1), 81–88 (2019)

    Article  Google Scholar 

  22. Wang, L., et al.: Diagnostic and prognostic value of right ventricular eccentricity index in pulmonary artery hypertension. Pulm. Circul. 10(2), 2045894019899778 (2020)

    Article  Google Scholar 

  23. Wu, P., et al.: Cardiac MR image sequence segmentation with temporal motion encoding. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020, Part I. LNCS, vol. 12535, pp. 298–309. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66415-2_19

    Chapter  Google Scholar 

  24. Yan, W., Wang, Y., van der Geest, R.J., Tao, Q.: Cine MRI analysis by deep learning of optical flow: adding the temporal dimension. Comput. Biol. Med. 111, 103356 (2019)

    Article  Google Scholar 

  25. Yan, W., Wang, Y., Li, Z., van der Geest, R.J., Tao, Q.: Left ventricle segmentation via optical-flow-net from short-axis cine MRI: preserving the temporal coherence of cardiac motion. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018, Part IV. LNCS, vol. 11073, pp. 613–621. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_70

    Chapter  Google Scholar 

  26. Yilmaz, P., Wallecan, K., Kristanto, W., Aben, J.P., Moelker, A.: Evaluation of a semi-automatic right ventricle segmentation method on short-axis MR images. J. Digit. Imaging 31, 670–679 (2018)

    Article  Google Scholar 

  27. Zhao, Y., Simonetti, O., Han, Y., Tao, Q.: Artificial intelligence failure in cardiac magnetic resonance image segmentation: An empirical study. J. Cardiovasc. Magn. Reson. 26 (2024)

    Google Scholar 

  28. Zhao, Y., et al.: Bayesian uncertainty estimation by Hamiltonian Monte Carlo: applications to cardiac MRI segmentation (2024)

    Google Scholar 

  29. Zhao, Y., Yang, C., Schweidtmann, A., Tao, Q.: Efficient Bayesian uncertainty estimation for nnU-net. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13438, pp. 535–544. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_51

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the TU Delft AI Initiative for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Tao .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, Y., Zhang, Y., Simonetti, O., Han, Y., Tao, Q. (2024). Lost in Tracking: Uncertainty-Guided Cardiac Cine MRI Segmentation at Right Ventricle Base. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15009. Springer, Cham. https://doi.org/10.1007/978-3-031-72114-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72114-4_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72113-7

  • Online ISBN: 978-3-031-72114-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics