Abstract
Conventional medical image segmentation methods are only based on images, implying a requirement for adequate high-quality labeled images. Text-guided segmentation methods have been widely regarded as a solution to break the performance bottleneck. In this study, we introduce a bidirectional Medical Adaptor (MAdapter) where visual and linguistic features extracted from pre-trained dual encoders undergo interactive fusion. Additionally, a specialized decoder is designed to further align the fusion representation and global textual representation. Besides, we extend the endoscopic polyp datasets with clinical-oriented text annotations, following the guidance of medical professionals. Extensive experiments conducted on both the extended endoscopic polyp dataset and additional lung infection datasets demonstrate the superiority of our method. The code and text annotation are available at https://github.com/XShadow22/MAdapter.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science, vol. 9351. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Vaswani, A., et al.: Attention is all you need. Adv. Neural. Inf. Process. Syst. 30, 1–11 (2017)
Li, Z., et al.: LViT: language meets vision transformer in medical image segmentation. IEEE Trans. Med. Imaging 43(1), 96–107 (2024)
Zhong, Y., Xu, M., Liang, K., Chen, K., Wu, M.: Ariadne’s thread: using text prompts to improve segmentation of infected areas from chest X-ray images. In: Greenspan, H., et al. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol. 14223. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43901-8_69
Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39(6), 1856–1867 (2019)
Lüddecke, T., Ecker, A.: Image segmentation using text and image prompts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7086–7096 (2022)
Wang, Z., et al.: CRIS: clip-driven referring image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11686–11695 (2022)
Xu, Z., Chen, Z., Zhang, Y., Song, Y., Wan, X., Li, G.: Bridging vision and language encoders: parameter-efficient tuning for referring image segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 17503–17512 (2023)
Poudel, K., Dhakal, M., Bhandari, P., Adhikari, R., Thapaliya, S., Khanal, B.: Exploring transfer learning in medical image segmentation using vision-language models. arXiv preprint arXiv:2308.07706 (2023)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: Proceedings of the International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)
Liu, C. et al.: M-FLAG: medical vision-language pre-training with frozen language models and latent space geometry optimization. In: Greenspan, H., et al. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol. 14220. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43907-0_61
Lee, G.E., Kim, S.H., Cho, J., Choi, S.T., Choi, S.I. : Text-guided cross-position attention for segmentation: case of medical image. In: Greenspan, H., et al.(eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol. 14224. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43904-9_52
Degerli, A., Kiranyaz, S., Chowdhury, M.E., Gabbouj, M.: OSegNet: operational segmentation network for COVID-19 detection using chest X-ray images. In: Proceedings of the 2022 IEEE International Conference on Image Processing (ICIP), pp. 2306–2310. IEEE (2022)
Morozov, S.P., et al.: MosMedData: Chest CT scans with COVID-19 related findings dataset. arXiv preprint arXiv:2005.06465 (2022)
Fan, D.P., et al.: PraNet: parallel reverse attention network for polyp segmentation. In: Martel, A.L., et al.(eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science, vol. 12266. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_26
Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. CMIG 43, 99–111 (2015)
Jha, D., et al.: Kvasir-SEG: a segmented polyp dataset. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 451–462. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_37
Silva, J., Histace, A., Romain, O., Dray, X., Granado, B.: Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer. Int. J. Comput. Assist. Radiol. Surg. 9(2), 283–293 (2014)
Tajbakhsh, N., Gurudu, S.R., Liang, J.: Automated polyp detection in colonoscopy videos using shape and context information. IEEE Trans. Med. Imaging 35(2), 630–644 (2015)
Vázquez, D., et al.: A benchmark for endoluminal scene segmentation of colonoscopy images. J. Healthc. Eng. 2017, 4037190 (2017)
Zhang, S., et al.: Large-scale domain-specific pretraining for biomedical vision-language processing. arXiv preprint arXiv:2303.00915 (2023)
Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A ConvNet for the 2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11976–11986 (2022)
Boecking, B., et al.: Making the most of text semantics to improve biomedical vision-language processing. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision-ECCV 2022: 17th European Conference, Tel Aviv, Israel, 23–27 October 2022, Proceedings, Part XXXVI, pp. 1–21. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20059-5_1
Acknowledgments
This project is funded by the Cross-Innovative Talent Project of RenMin Hospital of Wuhan University (Project No: JCRCZN-2022-006).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, X., Ni, B., Yang, Y., Zhang, L. (2024). MAdapter: A Better Interaction Between Image and Language for Medical Image Segmentation. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15009. Springer, Cham. https://doi.org/10.1007/978-3-031-72114-4_41
Download citation
DOI: https://doi.org/10.1007/978-3-031-72114-4_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72113-7
Online ISBN: 978-3-031-72114-4
eBook Packages: Computer ScienceComputer Science (R0)