Skip to main content

MAdapter: A Better Interaction Between Image and Language for Medical Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15009))

  • 2003 Accesses

Abstract

Conventional medical image segmentation methods are only based on images, implying a requirement for adequate high-quality labeled images. Text-guided segmentation methods have been widely regarded as a solution to break the performance bottleneck. In this study, we introduce a bidirectional Medical Adaptor (MAdapter) where visual and linguistic features extracted from pre-trained dual encoders undergo interactive fusion. Additionally, a specialized decoder is designed to further align the fusion representation and global textual representation. Besides, we extend the endoscopic polyp datasets with clinical-oriented text annotations, following the guidance of medical professionals. Extensive experiments conducted on both the extended endoscopic polyp dataset and additional lung infection datasets demonstrate the superiority of our method. The code and text annotation are available at https://github.com/XShadow22/MAdapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science, vol. 9351. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  2. Vaswani, A., et al.: Attention is all you need. Adv. Neural. Inf. Process. Syst. 30, 1–11 (2017)

    Google Scholar 

  3. Li, Z., et al.: LViT: language meets vision transformer in medical image segmentation. IEEE Trans. Med. Imaging 43(1), 96–107 (2024)

    Article  Google Scholar 

  4. Zhong, Y., Xu, M., Liang, K., Chen, K., Wu, M.: Ariadne’s thread: using text prompts to improve segmentation of infected areas from chest X-ray images. In: Greenspan, H., et al. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol. 14223. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43901-8_69

  5. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39(6), 1856–1867 (2019)

    Article  Google Scholar 

  6. Lüddecke, T., Ecker, A.: Image segmentation using text and image prompts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7086–7096 (2022)

    Google Scholar 

  7. Wang, Z., et al.: CRIS: clip-driven referring image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11686–11695 (2022)

    Google Scholar 

  8. Xu, Z., Chen, Z., Zhang, Y., Song, Y., Wan, X., Li, G.: Bridging vision and language encoders: parameter-efficient tuning for referring image segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 17503–17512 (2023)

    Google Scholar 

  9. Poudel, K., Dhakal, M., Bhandari, P., Adhikari, R., Thapaliya, S., Khanal, B.: Exploring transfer learning in medical image segmentation using vision-language models. arXiv preprint arXiv:2308.07706 (2023)

  10. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: Proceedings of the International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  11. Liu, C. et al.: M-FLAG: medical vision-language pre-training with frozen language models and latent space geometry optimization. In: Greenspan, H., et al. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol. 14220. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43907-0_61

  12. Lee, G.E., Kim, S.H., Cho, J., Choi, S.T., Choi, S.I. : Text-guided cross-position attention for segmentation: case of medical image. In: Greenspan, H., et al.(eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol. 14224. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43904-9_52

  13. Degerli, A., Kiranyaz, S., Chowdhury, M.E., Gabbouj, M.: OSegNet: operational segmentation network for COVID-19 detection using chest X-ray images. In: Proceedings of the 2022 IEEE International Conference on Image Processing (ICIP), pp. 2306–2310. IEEE (2022)

    Google Scholar 

  14. Morozov, S.P., et al.: MosMedData: Chest CT scans with COVID-19 related findings dataset. arXiv preprint arXiv:2005.06465 (2022)

  15. Fan, D.P., et al.: PraNet: parallel reverse attention network for polyp segmentation. In: Martel, A.L., et al.(eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science, vol. 12266. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_26

  16. Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. CMIG 43, 99–111 (2015)

    Google Scholar 

  17. Jha, D., et al.: Kvasir-SEG: a segmented polyp dataset. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 451–462. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_37

  18. Silva, J., Histace, A., Romain, O., Dray, X., Granado, B.: Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer. Int. J. Comput. Assist. Radiol. Surg. 9(2), 283–293 (2014)

    Article  Google Scholar 

  19. Tajbakhsh, N., Gurudu, S.R., Liang, J.: Automated polyp detection in colonoscopy videos using shape and context information. IEEE Trans. Med. Imaging 35(2), 630–644 (2015)

    Article  Google Scholar 

  20. Vázquez, D., et al.: A benchmark for endoluminal scene segmentation of colonoscopy images. J. Healthc. Eng. 2017, 4037190 (2017)

    Article  Google Scholar 

  21. Zhang, S., et al.: Large-scale domain-specific pretraining for biomedical vision-language processing. arXiv preprint arXiv:2303.00915 (2023)

  22. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A ConvNet for the 2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11976–11986 (2022)

    Google Scholar 

  23. Boecking, B., et al.: Making the most of text semantics to improve biomedical vision-language processing. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision-ECCV 2022: 17th European Conference, Tel Aviv, Israel, 23–27 October 2022, Proceedings, Part XXXVI, pp. 1–21. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20059-5_1

Download references

Acknowledgments

This project is funded by the Cross-Innovative Talent Project of RenMin Hospital of Wuhan University (Project No: JCRCZN-2022-006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Yang or Lefei Zhang .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 134 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Ni, B., Yang, Y., Zhang, L. (2024). MAdapter: A Better Interaction Between Image and Language for Medical Image Segmentation. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15009. Springer, Cham. https://doi.org/10.1007/978-3-031-72114-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72114-4_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72113-7

  • Online ISBN: 978-3-031-72114-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics