Skip to main content

Unsupervised Domain Adaptation Using Soft-Labeled Contrastive Learning with Reversed Monte Carlo Method for Cardiac Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Recent unsupervised domain adaptation methods in medical image segmentation adopt centroid/prototypical contrastive learning (CL) to match the source and target features for their excellent ability of representation learning and semantic feature alignment. Of these CL methods, most works extract features with a binary mask generated by similarity measure or thresholding the prediction. However, this hard-threshold (HT) strategy may induce sparse features and incorrect label assignments. Conversely, while the soft-labeling technique has proven effective in addressing the limitations of the HT strategy by assigning importance factors to pixel features, it remains unexplored in CL algorithms. Thus, in this work, we present a novel CL approach leveraging soft pseudo labels for category-wise target centroid generation, complemented by a reversed Monte Carlo method to achieve a more compact target feature space. Additionally, we propose a centroid norm regularizer as an extra magnitude constraint to bolster the model’s robustness. Extensive experiments and ablation studies on two cardiac data sets underscore the effectiveness of each component and reveal a significant enhancement in segmentation results in Dice Similarity Score and Hausdorff Distance 95 compared with a wide range of state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cai, J., Xia, Y., Yang, D., Xu, D., Yang, L., Roth, H.: End-to-end adversarial shape learning for abdomen organ deep segmentation. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 124–132. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_15

    Chapter  Google Scholar 

  2. Chaitanya, K., Erdil, E., Karani, N., Konukoglu, E.: Contrastive learning of global and local features for medical image segmentation with limited annotations. In: Advances in Neural Information Processing Systems, vol. 33, pp. 12546–12558 (2020)

    Google Scholar 

  3. Haq, M.M., Huang, J.: Adversarial domain adaptation for cell segmentation. In: Medical Imaging with Deep Learning, pp. 277–287. PMLR (2020)

    Google Scholar 

  4. Harrison, R.L.: Introduction to Monte Carlo simulation. In: AIP Conference Proceedings, vol. 1204, pp. 17–21. American Institute of Physics (2010)

    Google Scholar 

  5. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  6. Kuang, S., et al.: MSCDA: multi-level semantic-guided contrast improves unsupervised domain adaptation for breast MRI segmentation in small datasets. Neural Netw. 165, 119–134 (2023)

    Article  Google Scholar 

  7. Lee, G., Eom, C., Lee, W., Park, H., Ham, B.: Bi-directional contrastive learning for domain adaptive semantic segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022, Part XXX. LNCS, vol. 13690, pp. 38–55. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20056-4_3

    Chapter  Google Scholar 

  8. Liang, C., Cheng, B., Xiao, B., Dong, Y., Chen, J.: Multilevel heterogeneous domain adaptation method for remote sensing image segmentation. IEEE Trans. Geosci. Remote Sens. 61, 1–16 (2023)

    Google Scholar 

  9. Liu, Z., Zhu, Z., Zheng, S., Liu, Y., Zhou, J., Zhao, Y.: Margin preserving self-paced contrastive learning towards domain adaptation for medical image segmentation. IEEE J. Biomed. Health Inform. 26(2), 638–647 (2022)

    Article  Google Scholar 

  10. Marsden, R.A., Bartler, A., Döbler, M., Yang, B.: Contrastive learning and self-training for unsupervised domain adaptation in semantic segmentation. In: 2022 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2022)

    Google Scholar 

  11. Mugnai, D., Pernici, F., Turchini, F., Del Bimbo, A.: Soft pseudo-labeling semi-supervised learning applied to fine-grained visual classification. In: Del Bimbo, A., et al. (eds.) ICPR 2021. LNCS, vol. 12664, pp. 102–110. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68799-1_8

    Chapter  Google Scholar 

  12. Müller, R., Kornblith, S., Hinton, G.E.: When does label smoothing help? Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  13. Tanaka, D., Ikami, D., Yamasaki, T., Aizawa, K.: Joint optimization framework for learning with noisy labels. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5552–5560 (2018)

    Google Scholar 

  14. Thulasidasan, S., Chennupati, G., Bilmes, J.A., Bhattacharya, T., Michalak, S.: On mixup training: improved calibration and predictive uncertainty for deep neural networks. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  15. Tsai, Y., Hung, W., Schulter, S., Sohn, K., Yang, M., Chandraker, M.: Learning to adapt structured output space for semantic segmentation. In: CVPR, pp. 7472–7481 (2018)

    Google Scholar 

  16. Vesal, S., Gu, M., Kosti, R., Maier, A., Ravikumar, N.: Adapt everywhere: unsupervised adaptation of point-clouds and entropy minimization for multi-modal cardiac image segmentation. IEEE Trans. Med. Imaging 40(7), 1838–1851 (2021)

    Article  Google Scholar 

  17. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: adversarial entropy minimization for domain adaptation in semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2517–2526 (2019)

    Google Scholar 

  18. Wang, S., Yu, L., Li, K., Yang, X., Fu, C.-W., Heng, P.-A.: Boundary and entropy-driven adversarial learning for fundus image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 102–110. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_12

    Chapter  Google Scholar 

  19. Wang, Y., et al.: Semi-supervised semantic segmentation using unreliable pseudo-labels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4248–4257 (2022)

    Google Scholar 

  20. Wu, F., Zhuang, X.: CF distance: a new domain discrepancy metric and application to explicit domain adaptation for cross-modality cardiac image segmentation. IEEE Trans. Med. Imaging 39(12), 4274–4285 (2020)

    Article  Google Scholar 

  21. Xie, B., Li, S., Li, M., Liu, C.H., Huang, G., Wang, G.: Sepico: semantic-guided pixel contrast for domain adaptive semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 45(7), 9004–9021 (2023)

    Google Scholar 

  22. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  23. Zhao, X., et al.: Contrastive learning for label efficient semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10623–10633 (2021)

    Google Scholar 

  24. Zhuang, X.: Multivariate mixture model for myocardial segmentation combining multi-source images. IEEE Trans. Pattern Anal. Mach. Intell. 41(12), 2933–2946 (2018)

    Article  Google Scholar 

  25. Zhuang, X., et al.: Evaluation of algorithms for multi-modality whole heart segmentation: an open-access grand challenge. Med. Image Anal. 58, 101537 (2019)

    Google Scholar 

  26. Zhuang, X., Shen, J.: Multi-scale patch and multi-modality atlases for whole heart segmentation of MRI. Med. Image Anal. 31, 77–87 (2016)

    Article  Google Scholar 

  27. Zou, Y., Yu, Z., Liu, X., Kumar, B., Wang, J.: Confidence regularized self-training. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5982–5991 (2019)

    Google Scholar 

Download references

Acknowledgments

The work is supported by the European Research Council (ERC Grant No. 810316) and HPC resources are provided by the Erlangen National High Performance Computing Center (NHR@FAU) of the Friedrich-Alexander-UniversitätErlangen-Nürnberg. The hardware is funded by the German Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxuan Gu .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 9734 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gu, M. et al. (2024). Unsupervised Domain Adaptation Using Soft-Labeled Contrastive Learning with Reversed Monte Carlo Method for Cardiac Image Segmentation. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15009. Springer, Cham. https://doi.org/10.1007/978-3-031-72114-4_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72114-4_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72113-7

  • Online ISBN: 978-3-031-72114-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics