Skip to main content

No-New-Denoiser: A Critical Analysis of Diffusion Models for Medical Image Denoising

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Diffusion models, originally introduced for image generation, have recently gained attention as a promising image denoising approach. In this work, we perform comprehensive experiments to investigate the challenges posed by diffusion models when applied to medical image denoising. In medical imaging, retaining the original image content, and refraining from adding or removing potentially pathologic details is of utmost importance. Through empirical analysis and discussions, we highlight the trade-off between image perception and distortion in the context of diffusion-based denoising. In particular, we demonstrate that standard diffusion model sampling schemes yield a reduction in PSNR by up to 14% compared to one-step denoising. Additionally, we provide visual evidence indicating that diffusion models, in combination with stochastic sampling, have a tendency to generate synthetic structures during the denoising process, consequently compromising the clinical validity of the denoised images. Our thorough investigation raises questions about the suitability of diffusion models for medical image denoising, underscoring potential limitations that warrant careful consideration for future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aja-Fernández, S., Vegas-Sánchez-Ferrero, G., Tristán-Vega, A.: Noise estimation in parallel MRI: GRAPPA and SENSE. J. Magn. Reson. Imaging 32(3), 281–290 (2014)

    Article  Google Scholar 

  2. Anand, C., Sahambi, J.: MRI denoising using bilateral filter in redundant wavelet domain. In: TENCON 2008-2008 IEEE Region 10 Conference, pp. 1–6. IEEE (2008)

    Google Scholar 

  3. Aubert-Broche, B., Griffin, M., Pike, G., Evans, A., Collins, D.: Twenty new digital brain phantoms for creation of validation image data bases. IEEE Trans. Med. Imaging 25, 1410–1416 (2006)

    Article  Google Scholar 

  4. Batson, J., Royer, L.: Noise2self: blind denoising by self-supervision. In: International Conference on Machine Learning, pp. 524–533. PMLR (2019)

    Google Scholar 

  5. Beister, M., Kolditz, D., Kalender, W.A.: Iterative reconstruction methods in X-ray CT. Physica Med. 28(2), 94–108 (2012)

    Article  Google Scholar 

  6. Chen, T.: On the importance of noise scheduling for diffusion models. arXiv preprint arXiv:2301.10972 (2023)

  7. Chung, H., Lee, E.S., Ye, J.C.: MR image denoising and super-resolution using regularized reverse diffusion. IEEE Trans. Med. Imaging 42(4), 922–934 (2022)

    Article  Google Scholar 

  8. Chung, H., Ye, J.C.: Score-based diffusion models for accelerated MRI. Med. Image Anal. 80, 102479 (2022)

    Article  Google Scholar 

  9. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)

    Google Scholar 

  10. Kannengiesser, S., Mailhe, B., Nadar, M., Huber, S., Kiefer, B.: Universal iterative denoising of complex-valued volumetric MR image data using supplementary information. In: ISMRM (2016)

    Google Scholar 

  11. Kaur, A., Dong, G.: A complete review on image denoising techniques for medical images. Neural Process. Lett. 1–44 (2023)

    Google Scholar 

  12. Kelm, Z.S., Blezek, D., Bartholmai, B., Erickson, B.J.: Optimizing non-local means for denoising low dose CT. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 662–665. IEEE (2009)

    Google Scholar 

  13. Koonjoo, N., Zhu, B., Bagnall, G.C., Bhutto, D., Rosen, M.: Boosting the signal-to-noise of low-field MRI with deep learning image reconstruction. Sci. Rep. 11(1), 8248 (2021)

    Article  Google Scholar 

  14. Krull, A., Buchholz, T., Jug, F.: Noise2Void-learning denoising from single noisy images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2129–2137 (2019)

    Google Scholar 

  15. Lehtinen, J., et al.: Noise2noise: learning image restoration without clean data. arXiv preprint arXiv:1803.04189 (2018)

  16. Li, T., Feng, H., Wang, L., Xiong, Z., Huang, H.: Stimulating the diffusion model for image denoising via adaptive embedding and ensembling. arXiv preprint arXiv:2307.03992 (2023)

  17. Lustig, M., Donoho, D., Pauly, J.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  18. Manjón, J.V., Carbonell-Caballero, J., Lull, J.J., García-Martí, G., Martí-Bonmatí, L., Robles, M.: MRI denoising using non-local means. Med. Image Anal. 12(4), 514–523 (2008)

    Article  Google Scholar 

  19. Marques, J., Simonis, F., Webb, A.: Low-field MRI: an MR physics perspective. J. Magn. Reson. Imaging 49(6), 1528–1542 (2019)

    Article  Google Scholar 

  20. Pearl, N., et al.: SVNR: spatially-variant noise removal with denoising diffusion. arXiv preprint arXiv:2306.16052 (2023)

  21. Pfaff, L., et al.: Self-supervised MRI denoising: leveraging Stein’s unbiased risk estimator and spatially resolved noise maps. Sci. Rep. 13(1), 22629 (2023)

    Article  Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: International Conference on Machine Learning, pp. 2256–2265. PMLR (2015)

    Google Scholar 

  24. Soltanayev, S., Chun, S.: Training and refining deep learning based denoisers without ground truth data. arXiv preprint arXiv:1803.01314 (2018)

  25. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502 (2020)

  26. Wagner, F., et al.: Ultra low-parameter denoising: trainable bilateral filter layers in computed tomography. Med. Phys. 49(8), 5107–5120 (2022)

    Article  Google Scholar 

  27. Wagner, F., et al.: On the benefit of dual-domain denoising in a self-supervised low-dose CT setting. In: 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), pp. 1–5. IEEE (2023)

    Google Scholar 

  28. Xiang, T.: DDM\(^2\) (2023). https://github.com/StanfordMIMI/DDM2

  29. Xiang, T., Yurt, M., Syed, A.B., Setsompop, K., Chaudhari, A.: DDM\(^2\): self-supervised diffusion MRI denoising with generative diffusion models. arXiv preprint arXiv:2302.03018 (2023)

  30. Yang, C., Liang, L., Su, Z.: Real-world denoising via diffusion model. arXiv preprint arXiv:2305.04457 (2023)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Pfaff .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

L.P. receives PhD funding from Siemens Healthineers AG. F.W. and T.W. are employees of Siemens Healthineers AG. All other authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pfaff, L. et al. (2024). No-New-Denoiser: A Critical Analysis of Diffusion Models for Medical Image Denoising. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15010. Springer, Cham. https://doi.org/10.1007/978-3-031-72117-5_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72117-5_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72116-8

  • Online ISBN: 978-3-031-72117-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics