Skip to main content

F2TNet: FMRI to T1w MRI Knowledge Transfer Network for Brain Multi-phenotype Prediction

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Using brain imaging data to predict the non-neuroimaging phenotypes at the individual level is a fundamental goal of system neuroscience. Despite its significance, the high acquisition cost of functional Magnetic Resonance Imaging (fMRI) hampers its clinical translation in phenotype prediction, while the analysis based solely on cost-efficient T1-weighted (T1w) MRI yields inferior performance than fMRI. The reasons lie in that existing works ignore two significant challenges. 1) they neglect the knowledge transfer from fMRI to T1w MRI, failing to achieve effective prediction using cost-efficient T1w MRI. 2) They are limited to predicting a single phenotype and cannot capture the intrinsic dependence among various phenotypes, such as strength and endurance, preventing comprehensive and accurate clinical analysis. To tackle these issues, we propose an FMRI to T1w MRI knowledge transfer Network (F2TNet) to achieve cost-efficient and effective analysis on brain multi-phenotype, representing the first attempt in this field, which consists of a Phenotypes-guided Knowledge Transfer (PgKT) module and a modality-aware Multi-phenotype Prediction (MpP) module. Specifically, PgKT aligns brain nodes across modalities by solving a bipartite graph-matching problem, thereby achieving adaptive knowledge transfer from fMRI to T1w MRI through the guidance of multi-phenotype. Then, MpP enriches the phenotype codes with cross-modal complementary information and decomposes these codes to enable accurate multi-phenotype prediction. Experimental results demonstrate that the F2TNet significantly improves the prediction of brain multi-phenotype and outperforms state-of-the-art methods. The code is available at https://github.com/CUHK-AIM-Group/F2TNet.

Z. He—This work was done when Zhibin He was a visiting student at the Department of Electronic Engineering, The Chinese University of Hong Kong.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Biswal, B., Zerrin Yetkin, F., Haughton, V.M., Hyde, J.S.: Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magnetic resonance in medicine 34(4), 537–541 (1995)

    Article  Google Scholar 

  2. Buckner, R.L., Krienen, F.M., Yeo, B.T.: Opportunities and limitations of intrinsic functional connectivity mri. Nature neuroscience 16(7), 832–837 (2013)

    Article  Google Scholar 

  3. Chen, J., Tam, A., Kebets, V., Orban, C., Ooi, L.Q.R., Asplund, C.L., Marek, S., Dosenbach, N.U., Eickhoff, S.B., Bzdok, D., et al.: Shared and unique brain network features predict cognitive, personality, and mental health scores in the abcd study. Nature communications 13(1), 1–17 (2022)

    Google Scholar 

  4. Chen, W., Liu, Y., Hu, J., Yuan, Y.: Dynamic depth-aware network for endoscopy super-resolution. IEEE Journal of Biomedical and Health Informatics 26(10), 5189–5200 (2022)

    Article  Google Scholar 

  5. Chen, Z., Li, W., Xing, X., Yuan, Y.: Medical federated learning with joint graph purification for noisy label learning. Medical Image Analysis 90, 102976 (2023)

    Article  Google Scholar 

  6. Cheng, J., Zhang, X., Zhao, F., Wu, Z., Yuan, X., Wang, L., Lin, W., Li, G.: Prediction of infant cognitive development with cortical surface-based multimodal learning. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 618–627. Springer (2023)

    Google Scholar 

  7. Gao, J., Zhao, L., Zhong, T., Li, C., He, Z., Wei, Y., Zhang, S., Guo, L., Liu, T., Han, J., et al.: Prediction of cognitive scores by joint use of movie-watching fmri connectivity and eye tracking via attention-censnet. Psychoradiology 3 (2023)

    Google Scholar 

  8. Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R., et al.: The minimal preprocessing pipelines for the human connectome project. Neuroimage 80, 105–124 (2013)

    Article  Google Scholar 

  9. Gordon, E.M., Laumann, T.O., Adeyemo, B., Huckins, J.F., Kelley, W.M., Petersen, S.E.: Generation and evaluation of a cortical area parcellation from resting-state correlations. Cerebral cortex 26(1), 288–303 (2016)

    Article  Google Scholar 

  10. He, Z., Du, L., Huang, Y., Jiang, X., Lv, J., Guo, L., Zhang, S., Zhang, T.: Gyral hinges account for the highest cost and the highest communication capacity in a corticocortical network. Cerebral Cortex 32(16), 3359–3376 (2022)

    Article  Google Scholar 

  11. He, Z., Li, W., Zhang, T., Yuan, Y.: H 2 gm: A hierarchical hypergraph matching framework for brain landmark alignment. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 548–558. Springer (2023)

    Google Scholar 

  12. Jiang, X., Zhang, T., Zhang, S., Kendrick, K.M., Liu, T.: Fundamental functional differences between gyri and sulci: implications for brain function, cognition, and behavior. Psychoradiology 1(1), 23–41 (2021)

    Article  Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  14. Li, C., Lin, M., Ding, Z., Lin, N., Zhuang, Y., Huang, Y., Ding, X., Cao, L.: Knowledge condensation distillation. In: European Conference on Computer Vision. pp. 19–35. Springer Nature Switzerland Cham (2022)

    Google Scholar 

  15. Li, J., Kong, R., Liégeois, R., Orban, C., Tan, Y., Sun, N., Holmes, A.J., Sabuncu, M.R., Ge, T., Yeo, B.T.: Global signal regression strengthens association between resting-state functional connectivity and behavior. NeuroImage 196, 126–141 (2019)

    Article  Google Scholar 

  16. Li, W., Liu, X., Yuan, Y.: Sigma: Semantic-complete graph matching for domain adaptive object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5291–5300 (2022)

    Google Scholar 

  17. Li, W., Liu, X., Yuan, Y.: Sigma++: Improved semantic-complete graph matching for domain adaptive object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence (2023)

    Google Scholar 

  18. Li, X., Zhou, Y., Dvornek, N., Zhang, M., Gao, S., Zhuang, J., Scheinost, D., Staib, L.H., Ventola, P., Duncan, J.S.: Braingnn: Interpretable brain graph neural network for fmri analysis. Medical Image Analysis 74, 102233 (2021)

    Article  Google Scholar 

  19. Liu, X., Peng, H., Zheng, N., Yang, Y., Hu, H., Yuan, Y.: Efficientvit: Memory efficient vision transformer with cascaded group attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 14420–14430 (2023)

    Google Scholar 

  20. Liu, Y., Li, W., Liu, J., Chen, H., Yuan, Y.: Grab-net: Graph-based boundary-aware network for medical point cloud segmentation. IEEE Transactions on Medical Imaging (2023)

    Google Scholar 

  21. Liu, Y., Liu, J., Yuan, Y.: Edge-oriented point-cloud transformer for 3d intracranial aneurysm segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 97–106. Springer (2022)

    Google Scholar 

  22. Nickerson, L.D.: Replication of resting state-task network correspondence and novel findings on brain network activation during task fmri in the human connectome project study. Scientific reports 8(1), 17543 (2018)

    Article  Google Scholar 

  23. Ooi, L.Q.R., Chen, J., Zhang, S., Kong, R., Tam, A., Li, J., Dhamala, E., Zhou, J.H., Holmes, A.J., Yeo, B.T.: Comparison of individualized behavioral predictions across anatomical, diffusion and functional connectivity mri. NeuroImage 263, 119636 (2022)

    Article  Google Scholar 

  24. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019)

    Google Scholar 

  25. Sebenius, I., Campbell, A., Morgan, S.E., Bullmore, E.T., Liò, P.: Multimodal graph coarsening for interpretable, mri-based brain graph neural network. In: 2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP). pp. 1–6. IEEE (2021)

    Google Scholar 

  26. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K., Consortium, W.M.H., et al.: The wu-minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Google Scholar 

  27. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in neural information processing systems 30 (2017)

    Google Scholar 

  28. Wang, Q., Zhao, S., He, Z., Zhang, S., Jiang, X., Zhang, T., Liu, T., Liu, C., Han, J.: Modeling functional difference between gyri and sulci within intrinsic connectivity networks. Cerebral Cortex 33(4), 933–947 (2023)

    Article  Google Scholar 

  29. Wang, Q., Zhao, S., Liu, T., Han, J., Liu, C.: Temporal fingerprints of cortical gyrification in marmosets and humans. Cerebral Cortex 33(17), 9802–9814 (2023)

    Article  Google Scholar 

  30. Yang, Q., Guo, X., Chen, Z., Woo, P.Y., Yuan, Y.: D 2-net: Dual disentanglement network for brain tumor segmentation with missing modalities. IEEE Transactions on Medical Imaging 41(10), 2953–2964 (2022)

    Article  Google Scholar 

  31. Zhang, S., Zhang, T., Cao, G., Zhou, J., He, Z., Li, X., Ren, Y., Liu, T., Jiang, X., Guo, L., et al.: Species-shared and-unique gyral peaks on human and macaque brains. Elife 12, RP90182 (2024)

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by Hong Kong Research Grants Council (RGC) General Research Fund 14204321, and in part by the National Natural Science Foundation of China 62131009.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tuo Zhang or Yixuan Yuan .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, Z. et al. (2024). F2TNet: FMRI to T1w MRI Knowledge Transfer Network for Brain Multi-phenotype Prediction. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15011. Springer, Cham. https://doi.org/10.1007/978-3-031-72120-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72120-5_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72119-9

  • Online ISBN: 978-3-031-72120-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics