Skip to main content

Test-Time Augmentation for Traveling Salesperson Problem

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2024 (ICANN 2024)

Abstract

We propose Test-Time Augmentation (TTA) as an effective technique for addressing combinatorial optimization problems, including the Traveling Salesperson Problem. In general, deep learning models possessing the property of invariance, where the output is uniquely determined regardless of the node indices, have been proposed to learn graph structures efficiently. In contrast, we interpret the permutation of node indices, which exchanges the elements of the distance matrix, as a TTA scheme. The results demonstrate that our method is capable of obtaining shorter solutions than the latest models. Furthermore, we show that the probability of finding a solution closer to an exact solution increases depending on the augmentation size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This paper assumes “Euclidean” TSP unless otherwise mentioned.

  2. 2.

    https://github.com/xbresson/TSP_Transformer.

References

  1. Applegate, D., Bixby, R., Chvatal, V., Cook, W.: Concorde tsp solver (2006). https://www.math.uwaterloo.ca/tsp/concorde.html

  2. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial optimization with reinforcement learning. In: preprint arXiv:1611.09940 (2016)

  3. de Berg, M., Bodlaender, H.L., Kisfaludi-Bak, S., Kolay, S.: An ETH-Tight exact algorithm for euclidean TSP. SIAM J. Comput. 52(3), 740–760 (2023)

    Article  MathSciNet  Google Scholar 

  4. Bresson, X., Laurent, T.: The transformer network for the traveling salesman problem. In: preprint arXiv:2103.03012 (2021)

  5. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Operat. Res. Forum 3 (1976)

    Google Scholar 

  6. Deudon, M., Cournut, P., Lacoste, A., Adulyasak, Y., Rousseau, L.M.: Learning heuristics for the tsp by policy gradient. In: Integration of AI and OR Techniques in Constraint Programming (2018)

    Google Scholar 

  7. Dufter, P., Schmitt, M., Schütze, H.: Position information in transformers: an overview. Comput. Linguist. 48(3), 733–763 (2022)

    Article  Google Scholar 

  8. Fu, Z.H., Qiu, K.B., Zha, H.: Generalize a small pre-trained model to arbitrarily large tsp instances. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 7474–7482 (2021)

    Google Scholar 

  9. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. In: ACM National Meeting (1962)

    Google Scholar 

  10. Helsgaun, K.: An effective implementation of the lin-kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126, 106–130 (2000)

    Article  MathSciNet  Google Scholar 

  11. Helsgaun, K.: An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling salesman and vehicle routing problems. Roskilde: Roskilde University 12, 966–980 (2017)

    Google Scholar 

  12. Hudson, B., Li, Q., Malencia, M., Prorok, A.: Graph neural network guided local search for the traveling salesperson problem. In: International Conference on Learning Representations (2022)

    Google Scholar 

  13. Johnson, D.S.: Local optimization and the traveling salesman problem. In: International Colloquium on Automata, Languages and Programming (1990)

    Google Scholar 

  14. Johnson, D.S., McGeoch, L.A.: The traveling salesman problem: a case study. Local search in combinatorial optimization, pp. 215–310 (1997)

    Google Scholar 

  15. Joshi, C.K., Cappart, Q., Rousseau, L.M., Laurent, T.: Learning the travelling salesperson problem requires rethinking generalization. Constraints 27(1), 70–98 (2022)

    Article  MathSciNet  Google Scholar 

  16. Joshi, C.K., Laurent, T., Bresson, X.: An efficient graph convolutional network technique for the travelling salesman problem. In: preprint arXiv:1906.01227 (2019)

  17. Jung, M., Lee, J., Kim, J.: A lightweight CNN-transformer model for learning traveling salesman problems. Appl. Intell. 1–12 (2024)

    Google Scholar 

  18. Kaempfer, Y., Wolf, L.: Learning the multiple traveling salesmen problem with permutation invariant pooling networks. In: preprint arXiv:1803.09621 (2018)

  19. Khalil, E.B., Dai, H., Zhang, Y., Dilkina, B.N., Song, L.: Learning combinatorial optimization algorithms over graphs. In: preprint arXiv:1704.01665 (2017)

  20. Kim, I., Kim, Y., Kim, S.: Learning loss for test-time augmentation. Adv. Neural Inform. Process. Syst. (2020)

    Google Scholar 

  21. Kimura, M.: Understanding test-time augmentation. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds.) ICONIP 2021. LNCS, vol. 13108, pp. 558–569. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92185-9_46

    Chapter  Google Scholar 

  22. Kool, W., van Hoof, H., Welling, M.: Attention, learn to solve routing problems! In: International Conference on Learning Representations (2019)

    Google Scholar 

  23. Kwon, Y.D., Choo, J., Kim, B., Yoon, I., Gwon, Y., Min, S.: Pomo: policy optimization with multiple optima for reinforcement learning. Adv. Neural. Inf. Process. Syst. 33, 21188–21198 (2020)

    Google Scholar 

  24. Kwon, Y.D., Choo, J., Yoon, I., Park, M., Park, D., Gwon, Y.: Matrix encoding networks for neural combinatorial optimization. Adv. Neural. Inf. Process. Syst. 34, 5138–5149 (2021)

    Google Scholar 

  25. Lin, S.: Computer solutions of the traveling salesman problem. Bell Syst. Tech. J. 44, 2245–2269 (1965)

    Article  MathSciNet  Google Scholar 

  26. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21, 498–516 (1973)

    Article  MathSciNet  Google Scholar 

  27. Lyzhov, A., Molchanova, Y., Ashukha, A., Molchanov, D., Vetrov, D.: Greedy policy search: a simple baseline for learnable test-time augmentation. In: Conference on Uncertainty in Artificial Intelligence, pp. 1308–1317. PMLR (2020)

    Google Scholar 

  28. Moshkov, N., Mathe, B., Kertesz-Farkas, A., Hollandi, R., Horvath, P.: Test-time augmentation for deep learning-based cell segmentation on microscopy images. Sci. Rep. 10(1), 5068 (2020)

    Article  Google Scholar 

  29. Nazari, M., Oroojlooy, A., Snyder, L.V., Takác, M.: Reinforcement learning for solving the vehicle routing problem. Neural Inform. Process. Syst. (2018)

    Google Scholar 

  30. Nowak, A.W., Villar, S., Bandeira, A.S., Bruna, J.: A note on learning algorithms for quadratic assignment with graph neural networks. In: preprint arXiv:1706.07450 (2017)

  31. Papadimitriou, C.H.: The euclidean travelling salesman problem is np-complete. Theoret. Comput. Sci. 4(3), 237–244 (1977)

    Article  MathSciNet  Google Scholar 

  32. Shanmugam, D., Blalock, D., Balakrishnan, G., Guttag, J.: Better aggregation in test-time augmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1214–1223 (2021)

    Google Scholar 

  33. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inform. Process. Syst. 30 (2017)

    Google Scholar 

  34. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. Adv. Neural Inform. Process. Syst. 28 (2015)

    Google Scholar 

  35. Wang, G., Li, W., Aertsen, M., Deprest, J., Ourselin, S., Vercauteren, T.: Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks. Neurocomputing 338, 34–45 (2019)

    Article  Google Scholar 

  36. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8, 229–256 (1992)

    Article  Google Scholar 

  37. Xiao, Y., et al.: Reinforcement learning-based non-autoregressive solver for traveling salesman problems. In: preprint arXiv:2308.00560 (2023)

Download references

Acknowledgments

This work was supported by JST-JPMJAX23CR and JSPS-JP23KJ1723, JP21K18312, JP22H05172, JP22H05173 and JP24K22308.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Ishiyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ishiyama, R., Shirakawa, T., Uchida, S., Matsuo, S. (2024). Test-Time Augmentation for Traveling Salesperson Problem. In: Wand, M., Malinovská, K., Schmidhuber, J., Tetko, I.V. (eds) Artificial Neural Networks and Machine Learning – ICANN 2024. ICANN 2024. Lecture Notes in Computer Science, vol 15016. Springer, Cham. https://doi.org/10.1007/978-3-031-72332-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72332-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72331-5

  • Online ISBN: 978-3-031-72332-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics