Abstract
We propose Test-Time Augmentation (TTA) as an effective technique for addressing combinatorial optimization problems, including the Traveling Salesperson Problem. In general, deep learning models possessing the property of invariance, where the output is uniquely determined regardless of the node indices, have been proposed to learn graph structures efficiently. In contrast, we interpret the permutation of node indices, which exchanges the elements of the distance matrix, as a TTA scheme. The results demonstrate that our method is capable of obtaining shorter solutions than the latest models. Furthermore, we show that the probability of finding a solution closer to an exact solution increases depending on the augmentation size.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
This paper assumes “Euclidean” TSP unless otherwise mentioned.
- 2.
References
Applegate, D., Bixby, R., Chvatal, V., Cook, W.: Concorde tsp solver (2006). https://www.math.uwaterloo.ca/tsp/concorde.html
Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial optimization with reinforcement learning. In: preprint arXiv:1611.09940 (2016)
de Berg, M., Bodlaender, H.L., Kisfaludi-Bak, S., Kolay, S.: An ETH-Tight exact algorithm for euclidean TSP. SIAM J. Comput. 52(3), 740–760 (2023)
Bresson, X., Laurent, T.: The transformer network for the traveling salesman problem. In: preprint arXiv:2103.03012 (2021)
Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Operat. Res. Forum 3 (1976)
Deudon, M., Cournut, P., Lacoste, A., Adulyasak, Y., Rousseau, L.M.: Learning heuristics for the tsp by policy gradient. In: Integration of AI and OR Techniques in Constraint Programming (2018)
Dufter, P., Schmitt, M., Schütze, H.: Position information in transformers: an overview. Comput. Linguist. 48(3), 733–763 (2022)
Fu, Z.H., Qiu, K.B., Zha, H.: Generalize a small pre-trained model to arbitrarily large tsp instances. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 7474–7482 (2021)
Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. In: ACM National Meeting (1962)
Helsgaun, K.: An effective implementation of the lin-kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126, 106–130 (2000)
Helsgaun, K.: An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling salesman and vehicle routing problems. Roskilde: Roskilde University 12, 966–980 (2017)
Hudson, B., Li, Q., Malencia, M., Prorok, A.: Graph neural network guided local search for the traveling salesperson problem. In: International Conference on Learning Representations (2022)
Johnson, D.S.: Local optimization and the traveling salesman problem. In: International Colloquium on Automata, Languages and Programming (1990)
Johnson, D.S., McGeoch, L.A.: The traveling salesman problem: a case study. Local search in combinatorial optimization, pp. 215–310 (1997)
Joshi, C.K., Cappart, Q., Rousseau, L.M., Laurent, T.: Learning the travelling salesperson problem requires rethinking generalization. Constraints 27(1), 70–98 (2022)
Joshi, C.K., Laurent, T., Bresson, X.: An efficient graph convolutional network technique for the travelling salesman problem. In: preprint arXiv:1906.01227 (2019)
Jung, M., Lee, J., Kim, J.: A lightweight CNN-transformer model for learning traveling salesman problems. Appl. Intell. 1–12 (2024)
Kaempfer, Y., Wolf, L.: Learning the multiple traveling salesmen problem with permutation invariant pooling networks. In: preprint arXiv:1803.09621 (2018)
Khalil, E.B., Dai, H., Zhang, Y., Dilkina, B.N., Song, L.: Learning combinatorial optimization algorithms over graphs. In: preprint arXiv:1704.01665 (2017)
Kim, I., Kim, Y., Kim, S.: Learning loss for test-time augmentation. Adv. Neural Inform. Process. Syst. (2020)
Kimura, M.: Understanding test-time augmentation. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds.) ICONIP 2021. LNCS, vol. 13108, pp. 558–569. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92185-9_46
Kool, W., van Hoof, H., Welling, M.: Attention, learn to solve routing problems! In: International Conference on Learning Representations (2019)
Kwon, Y.D., Choo, J., Kim, B., Yoon, I., Gwon, Y., Min, S.: Pomo: policy optimization with multiple optima for reinforcement learning. Adv. Neural. Inf. Process. Syst. 33, 21188–21198 (2020)
Kwon, Y.D., Choo, J., Yoon, I., Park, M., Park, D., Gwon, Y.: Matrix encoding networks for neural combinatorial optimization. Adv. Neural. Inf. Process. Syst. 34, 5138–5149 (2021)
Lin, S.: Computer solutions of the traveling salesman problem. Bell Syst. Tech. J. 44, 2245–2269 (1965)
Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21, 498–516 (1973)
Lyzhov, A., Molchanova, Y., Ashukha, A., Molchanov, D., Vetrov, D.: Greedy policy search: a simple baseline for learnable test-time augmentation. In: Conference on Uncertainty in Artificial Intelligence, pp. 1308–1317. PMLR (2020)
Moshkov, N., Mathe, B., Kertesz-Farkas, A., Hollandi, R., Horvath, P.: Test-time augmentation for deep learning-based cell segmentation on microscopy images. Sci. Rep. 10(1), 5068 (2020)
Nazari, M., Oroojlooy, A., Snyder, L.V., Takác, M.: Reinforcement learning for solving the vehicle routing problem. Neural Inform. Process. Syst. (2018)
Nowak, A.W., Villar, S., Bandeira, A.S., Bruna, J.: A note on learning algorithms for quadratic assignment with graph neural networks. In: preprint arXiv:1706.07450 (2017)
Papadimitriou, C.H.: The euclidean travelling salesman problem is np-complete. Theoret. Comput. Sci. 4(3), 237–244 (1977)
Shanmugam, D., Blalock, D., Balakrishnan, G., Guttag, J.: Better aggregation in test-time augmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1214–1223 (2021)
Vaswani, A., et al.: Attention is all you need. Adv. Neural Inform. Process. Syst. 30 (2017)
Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. Adv. Neural Inform. Process. Syst. 28 (2015)
Wang, G., Li, W., Aertsen, M., Deprest, J., Ourselin, S., Vercauteren, T.: Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks. Neurocomputing 338, 34–45 (2019)
Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8, 229–256 (1992)
Xiao, Y., et al.: Reinforcement learning-based non-autoregressive solver for traveling salesman problems. In: preprint arXiv:2308.00560 (2023)
Acknowledgments
This work was supported by JST-JPMJAX23CR and JSPS-JP23KJ1723, JP21K18312, JP22H05172, JP22H05173 and JP24K22308.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ishiyama, R., Shirakawa, T., Uchida, S., Matsuo, S. (2024). Test-Time Augmentation for Traveling Salesperson Problem. In: Wand, M., Malinovská, K., Schmidhuber, J., Tetko, I.V. (eds) Artificial Neural Networks and Machine Learning – ICANN 2024. ICANN 2024. Lecture Notes in Computer Science, vol 15016. Springer, Cham. https://doi.org/10.1007/978-3-031-72332-2_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-72332-2_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72331-5
Online ISBN: 978-3-031-72332-2
eBook Packages: Computer ScienceComputer Science (R0)