Skip to main content

Asymmetric Isomap for Dimensionality Reduction and Data Visualization

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2024 (ICANN 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15016))

Included in the following conference series:

  • 581 Accesses

Abstract

We propose an asymmetric version of the Isomap dimensionality reduction and data visualization approach. Our improvement uses the information on asymmetric input data relationships, and in this way, it determines the input dissimilarities more accurately than original Isomap. We introduce as well the asymmetric coefficients discovering and expressing the asymmetric properties of the input data. These coefficients asymmetrize geodesic distances in Isomap making this method asymmetric. The experiments on two real datasets confirm the effectiveness of our proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. Adv. Neural Inf. Process. Syst. 14, 586–691. MIT Press (2001)

    Google Scholar 

  2. Dua, D., Graff, C.: UCI machine learning repository (2019). http://archive.ics.uci.edu/ml

  3. Garzon, M., Yang, C., Venugopal, D., Kumar, N., Jana, K., Deng, L.: Dimensionality Reduction in Data Science. Springer International Publishing (2022). https://doi.org/10.1007/978-3-031-05371-9

  4. Ghojogh, B., Crowley, M., Karray, F., Ghodsi, A.: Elements of Dimensionality Reduction and Manifold Learning. Springer International Publishing (2023). https://doi.org/10.1007/978-3-031-10602-6

  5. Halder, R., Fidkowski, K.J., Maki, K.J.: An adaptive sampling algorithm for reduced-order models using Isomap. Int. J. Numer. Meth. Eng. 125(8), 7427 (2024)

    Article  MathSciNet  Google Scholar 

  6. Hinton, G., Roweis, S.T.: Stochastic neighbor embedding. Adv. Neural. Inf. Process. Syst. 14, 833–840 (2002)

    Google Scholar 

  7. Kohonen, T.: Self-Organizing Maps. Springer (2001). Third Edition https://doi.org/10.1007/978-3-642-56927-2

  8. van der Maaten, L., Hinton, G.E.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    Google Scholar 

  9. Martín-Merino, M., Muñoz, A.: Visualizing asymmetric proximities with SOM and MDS models. Neurocomputing 63, 171–192 (2005)

    Article  Google Scholar 

  10. McInnes, L., Healy, J., Melville, J.: UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction (2020). https://doi.org/10.48550/arXiv.1802.03426

  11. Olszewski, D.: A clustering-based adaptive Neighborhood Retrieval Visualizer. Neural Netw. 140, 247–260 (2021)

    Article  Google Scholar 

  12. Olszewski, D.: Clustering-based adaptive self-organizing map. In: Artificial Intelligence and Soft Computing (ICAISC 2021), Lecture Notes in Computer Science, vol. 12854, pp. 182–192 (2021)

    Google Scholar 

  13. Olszewski, D.: A data-scattering-preserving adaptive self-organizing map. Eng. Appl. Artif. Intell. 105, 104420 (2021)

    Article  Google Scholar 

  14. Olszewski, D.: An asymmetric topology-preserving neighborhood retrieval visualizer. Expert Syst. Appl. 225, 120175 (2023)

    Article  Google Scholar 

  15. Rehman, T.U., Yousaf, M., Jing, L.: A*-FastIsomap: an improved performance of classical Isomap based on A*Search algorithm. Neural Process. Lett. 55, 12719–12736 (2023)

    Article  Google Scholar 

  16. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Google Scholar 

  17. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  18. Venna, J., Peltonen, J., Nybo, K., Aidos, H., Kaski, S.: information retrieval perspective to nonlinear dimensionality reduction for data visualization. J. Mach. Learn. Res. 11, 451–490 (2010)

    Google Scholar 

  19. Xiao, L., Chao, S., Zhu, Z., Yang, L.H., Sheng, L.Q., Tao, T.: Three-dimensional aerodynamic shape inverse design based on ISOMAP. Aerosp. Sci. Technol. 139, 108409 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Olszewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Olszewski, D. (2024). Asymmetric Isomap for Dimensionality Reduction and Data Visualization. In: Wand, M., Malinovská, K., Schmidhuber, J., Tetko, I.V. (eds) Artificial Neural Networks and Machine Learning – ICANN 2024. ICANN 2024. Lecture Notes in Computer Science, vol 15016. Springer, Cham. https://doi.org/10.1007/978-3-031-72332-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72332-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72331-5

  • Online ISBN: 978-3-031-72332-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics