Abstract
We propose an asymmetric version of the Isomap dimensionality reduction and data visualization approach. Our improvement uses the information on asymmetric input data relationships, and in this way, it determines the input dissimilarities more accurately than original Isomap. We introduce as well the asymmetric coefficients discovering and expressing the asymmetric properties of the input data. These coefficients asymmetrize geodesic distances in Isomap making this method asymmetric. The experiments on two real datasets confirm the effectiveness of our proposal.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. Adv. Neural Inf. Process. Syst. 14, 586–691. MIT Press (2001)
Dua, D., Graff, C.: UCI machine learning repository (2019). http://archive.ics.uci.edu/ml
Garzon, M., Yang, C., Venugopal, D., Kumar, N., Jana, K., Deng, L.: Dimensionality Reduction in Data Science. Springer International Publishing (2022). https://doi.org/10.1007/978-3-031-05371-9
Ghojogh, B., Crowley, M., Karray, F., Ghodsi, A.: Elements of Dimensionality Reduction and Manifold Learning. Springer International Publishing (2023). https://doi.org/10.1007/978-3-031-10602-6
Halder, R., Fidkowski, K.J., Maki, K.J.: An adaptive sampling algorithm for reduced-order models using Isomap. Int. J. Numer. Meth. Eng. 125(8), 7427 (2024)
Hinton, G., Roweis, S.T.: Stochastic neighbor embedding. Adv. Neural. Inf. Process. Syst. 14, 833–840 (2002)
Kohonen, T.: Self-Organizing Maps. Springer (2001). Third Edition https://doi.org/10.1007/978-3-642-56927-2
van der Maaten, L., Hinton, G.E.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)
Martín-Merino, M., Muñoz, A.: Visualizing asymmetric proximities with SOM and MDS models. Neurocomputing 63, 171–192 (2005)
McInnes, L., Healy, J., Melville, J.: UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction (2020). https://doi.org/10.48550/arXiv.1802.03426
Olszewski, D.: A clustering-based adaptive Neighborhood Retrieval Visualizer. Neural Netw. 140, 247–260 (2021)
Olszewski, D.: Clustering-based adaptive self-organizing map. In: Artificial Intelligence and Soft Computing (ICAISC 2021), Lecture Notes in Computer Science, vol. 12854, pp. 182–192 (2021)
Olszewski, D.: A data-scattering-preserving adaptive self-organizing map. Eng. Appl. Artif. Intell. 105, 104420 (2021)
Olszewski, D.: An asymmetric topology-preserving neighborhood retrieval visualizer. Expert Syst. Appl. 225, 120175 (2023)
Rehman, T.U., Yousaf, M., Jing, L.: A*-FastIsomap: an improved performance of classical Isomap based on A*Search algorithm. Neural Process. Lett. 55, 12719–12736 (2023)
Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)
Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)
Venna, J., Peltonen, J., Nybo, K., Aidos, H., Kaski, S.: information retrieval perspective to nonlinear dimensionality reduction for data visualization. J. Mach. Learn. Res. 11, 451–490 (2010)
Xiao, L., Chao, S., Zhu, Z., Yang, L.H., Sheng, L.Q., Tao, T.: Three-dimensional aerodynamic shape inverse design based on ISOMAP. Aerosp. Sci. Technol. 139, 108409 (2023)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Olszewski, D. (2024). Asymmetric Isomap for Dimensionality Reduction and Data Visualization. In: Wand, M., Malinovská, K., Schmidhuber, J., Tetko, I.V. (eds) Artificial Neural Networks and Machine Learning – ICANN 2024. ICANN 2024. Lecture Notes in Computer Science, vol 15016. Springer, Cham. https://doi.org/10.1007/978-3-031-72332-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-72332-2_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72331-5
Online ISBN: 978-3-031-72332-2
eBook Packages: Computer ScienceComputer Science (R0)