Skip to main content

Global-Guided Weighted Enhancement for Salient Object Detection

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2024 (ICANN 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15017))

Included in the following conference series:

  • 453 Accesses

Abstract

Salient Object Detection (SOD) benefits from the guidance of global context to further enhance performance. However, most works focus on treating the top-layer features through simple compression and nonlinear processing as the global context, which inevitably lacks the integrity of the object. Moreover, directly integrating multi-level features with global context is ineffective for solving semantic dilution. Although the global context is considered to enhance the relationship among salient regions to reduce feature redundancy, equating high-level features with global context often results in suboptimal performance. To address these issues, we redefine the role of global context within the network and propose a new method called Global-Guided Weighted Enhancement Network (GWENet). We first design a Deep Semantic Feature Extractor (DSFE) to enlarge the receptive field of network, laying the foundation for global context extraction. Secondly, we construct a Global Perception Module (GPM) for global context modeling through pixel-level correspondence, which employs a global sliding weighted technique to provide the network with rich semantics and acts on each layer to enhance SOD performance by Global Guidance Flows (GGFs). Lastly, to effectively merge multi-level features with the global context, we introduce a Comprehensive Feature Enhancement Module (CFEM) that integrates all features within the module through 3D convolution, producing more robust feature maps. Extensive experiments on five challenging benchmark datasets demonstrate that GWENet achieves state-of-the-art results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, W., et al.: Salient object detection in the deep learning era: an in-depth survey. IEEE Trans. Pattern Anal. Mach. Intell. 44, 3239–3259 (2019)

    Google Scholar 

  2. Wu, Z., et al.: Cascaded partial decoder for fast and accurate salient object detection. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3902–3911 (2019)

    Google Scholar 

  3. Zhou, H., et al.: Interactive two-stream decoder for accurate and fast saliency detection. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9138–9147 (2020)

    Google Scholar 

  4. Liu, J., et al.: A simple pooling-based design for real-time salient object detection. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3912–3921 (2019)

    Google Scholar 

  5. Zhao, X., et al.: Suppress and Balance: A Simple Gated Network for Salient Object Detection. ArXiv abs/2007.08074 (2020)

    Google Scholar 

  6. Zhao, Z., et al.: complementary trilateral decoder for fast and accurate salient object detection. In: Proceedings of the 29th ACM International Conference on Multimedia (2021)

    Google Scholar 

  7. Wu, Y.H., et al.: EDN: salient object detection via extremely-downsampled network. IEEE Trans. Image Proc. 31, 3125-3136 (2020)

    Google Scholar 

  8. Wei, J., et al.: F3Net: Fusion, Feedback and Focus for Salient Object Detection. ArXiv abs/1911.11445 (2019)

    Google Scholar 

  9. Chen, Z., et al.: Global Context-Aware Progressive Aggregation Network for Salient Object Detection. ArXiv abs/2003.00651 (2020)

    Google Scholar 

  10. Xu, B., et al.: Locate globally, segment locally: a progressive architecture with knowledge review network for salient object detection. In: AAAI Conference on Artificial Intelligence (2021)

    Google Scholar 

  11. Liu, J., et al.: PoolNet+: exploring the potential of pooling for salient object detection. IEEE Trans. Pattern Anal. Mach. Intell. 45, 887–904 (2022)

    Google Scholar 

  12. Zhao, J., et al.: EGNet: edge guidance network for salient object detection. In: 2019 IEEE/CVF International Conference on Computer Vision, pp. 8778-8787 (2019)

    Google Scholar 

  13. Pang, Y., et al.: Multi-scale interactive network for salient object detection. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9410–9419 (2020)

    Google Scholar 

  14. Ma, M., et al.: Pyramidal feature shrinking for salient object detection. In: AAAI Conference on Artificial Intelligence (2021)

    Google Scholar 

  15. Zhuge, M., et al.: Salient object detection via integrity learning. IEEE Trans. Pattern Anal. Mach. Intell. 45, 3738–3752 (2021)

    Google Scholar 

  16. Qin, X., et al.: U2-Net: going deeper with nested u-structure for salient object detection. Pattern Recogniton. 106 , 107404 (2020)

    Google Scholar 

  17. Vaswani, A., et al.: Attention is all you need. Neural Inf. Proc. Syst. (2017)

    Google Scholar 

  18. Hu, J., et al.: Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2017)

    Google Scholar 

  19. Chen, L.C., et al.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: European Conference on Computer Vision (2018)

    Google Scholar 

  20. Chen, Q., et al.: 3-D convolutional neural networks for RGB-D salient object detection and beyond. IEEE Trans. Neural Netw. Learn. Syst. 35, 4309–4323 (2022)

    Google Scholar 

  21. Tan, Z., Xiaodong, G.: Feature recalibration network for salient object detection. In: International Conference on Artificial Neural Networks (2022). https://doi.org/10.1007/978-3-031-15937-4_6

  22. Li, J., et al.: Rethinking lightweight salient object detection via network depth-width tradeoff. IEEE Trans. Image Proc. 32, 5664–5677 (2023)

    Google Scholar 

Download references

Acknowledgements

This work is Supported by the National Natural Science Foundation of China under Grant 61672128.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jizhe Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, J., Liu, Y., Wei, H., Xu, K., Cao, Y., Li, J. (2024). Global-Guided Weighted Enhancement for Salient Object Detection. In: Wand, M., Malinovská, K., Schmidhuber, J., Tetko, I.V. (eds) Artificial Neural Networks and Machine Learning – ICANN 2024. ICANN 2024. Lecture Notes in Computer Science, vol 15017. Springer, Cham. https://doi.org/10.1007/978-3-031-72335-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72335-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72334-6

  • Online ISBN: 978-3-031-72335-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics