Skip to main content

Analysis of a Generative Model of Episodic Memory Based on Hierarchical VQ-VAE and Transformer

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2024 (ICANN 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15019))

Included in the following conference series:

  • 716 Accesses

Abstract

Memory reconstruction is considered a generative process regulated by the interplay between episodic memory and semantic information. However, few computational models have investigated this process in detail, and existing models have some limitations. In this study we develop and analyze a computational model that complements episodic memory with semantic information, looking into how attention affects the recall process in this integrated model. We aim to enhance and expand upon a computational model proposed by recent research [2], which has employed a Vector Quantized-Variational Autoencoder (VQ-VAE) as a model of the perceptual system and a PixelCNN architecture for semantic completions during memory reconstruction. While capable of generating plausible images and filling in missing parts of a memory trace, the model has limitations in attentional selection due to the rigid structure of PixelCNNs, as well as constraints in image resolution and complexity. In this work, we address these limitations and further investigate how attentional selection affects memory accuracy and generativity. First, we substitute the PixelCNN with a Transformer model (semantic memory) to capture underlying probability distributions from latent representations of the VQ-VAE (episodic memory). The transformer model allows a flexible attentional selection as opposed to the PixelCNN. We further utilize a hierarchical VQ-VAE, which resembles the hierarchical organization of the visual cortex. This hierarchical network allows the generation of more complex and realistic images. We also provide insights into the division of labor between two levels of the hierarchical VQ-VAE. Our simulations also illustrate the effects of different levels and forms of attention on memory consolidation and reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DeepMind: Sonnet vq-vae module implementation (2022). https://github.com/deepmind/sonnet/blob/master/sonnet/python/modules/nets/vqvae.py

  2. Fayyaz, Z., et al.: A model of semantic completion in generative episodic memory. Neural Comput. 34, 1841–1870 (2022). https://doi.org/10.1162/neco_a_01520

    Article  Google Scholar 

  3. Greenberg, D.L., Verfaellie, M.: Interdependence of episodic and semantic memory: evidence from neuropsychology. J. Int. Neuropsychol. Soc. 16(5), 748–753 (2010). https://doi.org/10.1017/S1355617710000676

    Article  Google Scholar 

  4. Horzyk, A.: Neurons can sort data efficiently. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 64–74. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59063-9_6

    Chapter  Google Scholar 

  5. Horzyk, A., Starzyk, J.A., Graham, J.: Integration of semantic and episodic memories. IEEE Trans. Neural Networks Learn. Syst. 28(12), 3084–3095 (2017). https://doi.org/10.1109/TNNLS.2017.2754449

    Article  MathSciNet  Google Scholar 

  6. Kruger, N.: Deep hierarchies in the primate visual cortex: what can we learn for computer vision? IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1847–1871 (2012). https://doi.org/10.1109/TPAMI.2012.272

    Article  Google Scholar 

  7. Landrigan, J.F., Mirman, D.: The cost of switching between taxonomic and thematic semantics. Memory Cogn. 46(2), 191–203 (2018). https://doi.org/10.3758/s13421-017-0766-1

    Article  Google Scholar 

  8. Lindsay, G.W.: Attention in psychology, neuroscience, and machine learning. Front. Comput. Neurosci. 14, 29 (2020). https://doi.org/10.3389/fncom.2020.00029

    Article  Google Scholar 

  9. Mahr, J.B., Csibra, G.: Why do we remember? the communicative function of episodic memory. Behav. Brain Sci. 41 (2018). https://doi.org/10.1017/S0140525X17000012

  10. Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al.: Conditional image generation with pixelcnn decoders. Adv. Neural. Inf. Process. Syst. 29, 4790–4798 (2016)

    Google Scholar 

  11. Pytorch: Pytorch mse loss function implementation (2022). https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html#torch.nn.MSELoss

  12. Razavi, A., Van den Oord, A., Vinyals, O.: Generating diverse high-fidelity images with vq-vae-2. Adv. Neural. Inf. Process. Syst. 32, 14866–14876 (2019)

    Google Scholar 

  13. Rosinality: Vq-vae-2 pytorch implementation (2022). https://github.com/rosinality/vq-vae-2-pytorch

  14. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  15. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Distilbert, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108 (2019)

  16. Seymour, K.J., Williams, M.A., Rich, A.N.: The representation of color across the human visual cortex: distinguishing chromatic signals contributing to object form versus surface color. Cereb. Cortex 26(5), 1997–2005 (2016). https://doi.org/10.1093/cercor/bhv018

    Article  Google Scholar 

  17. Squire, L.R., Zola, S.M.: Episodic memory, semantic memory, and amnesia. Hippocampus 8(3), 205–211 (1998). https://doi.org/10.1002/(SICI)1098-1063(1998)8:3<205::AID-HIPO3>3.0.CO;2-I

    Google Scholar 

  18. Van Den Oord, A., Vinyals, O., et al.: Neural discrete representation learning. Adv. Neural. Inf. Process. Syst. 30, 6306–6315 (2017)

    Google Scholar 

  19. Vaswani, A., et al.: Attention is all you need. Adv. Neural. Inf. Process. Syst. 30, 5998–6008 (2017)

    Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the German Research Foundation (DFG), “Constructing scenarios of the past: A new framework in episodic memory”, FOR 2812, project number 419039588, P5 (L.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirin Reyhanian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Reyhanian, S., Fayyaz, Z., Wiskott, L. (2024). Analysis of a Generative Model of Episodic Memory Based on Hierarchical VQ-VAE and Transformer. In: Wand, M., Malinovská, K., Schmidhuber, J., Tetko, I.V. (eds) Artificial Neural Networks and Machine Learning – ICANN 2024. ICANN 2024. Lecture Notes in Computer Science, vol 15019. Springer, Cham. https://doi.org/10.1007/978-3-031-72341-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72341-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72340-7

  • Online ISBN: 978-3-031-72341-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics