Abstract
Fashion understanding is a challenging multi-modal task of interpreting multi aspects of fashion images. While traditional computer vision or multi-modal algorithms fall short in providing a comprehensive understanding, Large Vision-Language Model (LVLM) offers a new approach. However, directly using LVLMs presents four major limitations, highlighting the need for a fashion-specific LVLM. Existing fashion datasets also reveal limitations in providing a coherent natural input that fits the LVLMs. To address this bottleneck, we introduce the FUND dataset featuring meticulously annotated textual descriptions for fashion images. Specifically, we build a fashion knowledge base and collect fashion images in various categories online. By leveraging image segmentation model and GPT4, we refine the pre-annotations through manual modifications. Through instruct-tuning with FUND, we develop FashionGPT, a GPT-assisted LVLM based on a solid architecture with exceptional performance on fashion understanding. It is capable of generating coherent and multi-aspect descriptions for fashion images and greatly alleviates the four limitations. Extensive experiments quantitatively and qualitatively demonstrate the effectiveness of FashionGPT and the benefits of FUND, and showcase the broad applications in more tasks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Bai, J., et al.: Qwen-VL: a frontier large vision-language model with versatile abilities. arXiv preprint arXiv:2308.12966 (2023)
Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020)
Changpinyo, S., Sharma, P., Ding, N., Soricut, R.: Conceptual 12 m: Pushing web-scale image-text pre-training to recognize long-tail visual concepts. In: CVPR (2021)
Chen, J., Guo, H., Yi, K., Li, B., Elhoseiny, M.: VisualGPT: data-efficient adaptation of pretrained language models for image captioning. In: CVPR, pp. 18030–18040 (2022)
Chen, K., Zhang, Z., Zeng, W., Zhang, R., Zhu, F., Zhao, R.: Shikra: unleashing multimodal llm’s referential dialogue magic. arXiv preprint arXiv:2306.15195 (2023)
Dai, W., et al.: InstructBLIP: towards general-purpose vision-language models with instruction tuning (2023)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Ge, Y., Zhang, R., Wang, X., Tang, X., Luo, P.: DeepFashion2: a versatile benchmark for detection, pose estimation, segmentation and re-identification of clothing images. In: CVPR, pp. 5337–5345 (2019)
Gu, X., Gao, F., Tan, M., Peng, P.: Fashion analysis and understanding with artificial intelligence. Inform. Process. Manage. 57(5), 102276 (2020)
Hadi Kiapour, M., Han, X., Lazebnik, S., Berg, A.C., Berg, T.L.: Where to buy it: matching street clothing photos in online shops. In: ICCV, pp. 3343–3351 (2015)
Hessel, J., Holtzman, A., Forbes, M., Bras, R.L., Choi, Y.: CLIPscore: a reference-free evaluation metric for image captioning. arXiv preprint arXiv:2104.08718 (2021)
Hoffmann, J., et al.: Training compute-optimal large language models. arXiv preprint arXiv:2203.15556 (2022)
Huang, J., Feris, R.S., Chen, Q., Yan, S.: Cross-domain image retrieval with a dual attribute-aware ranking network. In: ICCV, pp. 1062–1070 (2015)
Kirillov, A., et al.: Segment anything. arXiv:2304.02643 (2023)
Li, J., Li, D., Savarese, S., Hoi, S.: BLIP-2: bootstrapping language-image pre-training with frozen image encoders and large language models. arXiv preprint arXiv:2301.12597 (2023)
Liu, H., Li, C., Li, Y., Lee, Y.J.: Improved baselines with visual instruction tuning. arXiv preprint arXiv:2310.03744 (2023)
Liu, H., Li, C., Wu, Q., Lee, Y.J.: Visual instruction tuning. arXiv preprint arXiv:2304.08485 (2023)
Liu, Y., et al.: Multilingual denoising pre-training for neural machine translation (2020)
Liu, Z., Luo, P., Qiu, S., Wang, X., Tang, X.: DeepFashion: powering robust clothes recognition and retrieval with rich annotations. In: CVPR, pp. 1096–1104 (2016)
Ma, Y., Jia, J., Zhou, S., Fu, J., Liu, Y., Tong, Z.: Towards better understanding the clothing fashion styles: a multimodal deep learning approach. In: AAAI (2017)
OpenAI: Introducing ChatGPT (2022). https://openai.com/blog/chatgpt
OpenAI: Gpt-4 technical report (2023)
Ordonez, V., Kulkarni, G., Berg, T.: Im2Text: describing images using 1 million captioned photographs. In: NeurIPS (2011)
Peng, Z., et al.: Kosmos-2: Grounding multimodal large language models to the world. arXiv preprint arXiv:2306.14824 (2023)
Rostamzadeh, N., et al.: Fashion-Gen: the generative fashion dataset and challenge. arXiv preprint arXiv:1806.08317 (2018)
Schuhmann, C., Köpf, A., Vencu, R., Coombes, T., Beaumont, R.: LAION Coco: 600 m synthetic captions from laion2B-en. https://laion.ai/blog/laion-coco/ (2022)
Shankar, S., Garg, V.K., Cipolla, R.: Deep-carving: Discovering visual attributes by carving deep neural nets. In: CVPR, pp. 3403–3412 (2015)
Sun, Q., Fang, Y., Wu, L., Wang, X., Cao, Y.: EVA-CLIP: improved training techniques for clip at scale (2023)
Swain, D., Pandya, K., Sanghvi, J., Manchala, Y.: An intelligent fashion object classification using CNN. EAI Endorsed Trans. Ind. Netw. Intell. Syst. 10(4), e2 (2023)
Touvron, H., et al.: Llama: open and efficient foundation language models. arXiv preprint arXiv:2302.13971 (2023)
Touvron, H., et al.: Llama 2: open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023)
Zhao, B., Feng, J., Wu, X., Yan, S.: Memory-augmented attribute manipulation networks for interactive fashion search. In: CVPR, pp. 1520–1528 (2017)
Zhu, D., Chen, J., Shen, X., Li, X., Elhoseiny, M.: MiniGPT-4: enhancing vision-language understanding with advanced large language models. arXiv preprint arXiv:2304.10592 (2023)
Zou, X., Kong, X., Wong, W., Wang, C., Liu, Y., Cao, Y.: FashionAI: a hierarchical dataset for fashion understanding. In: CVPR Workshops (2019)
Acknowledgements
This research work has been funded by National Key R&D Program of China (Grant No. 2023YFC3303800) and Joint Funds of the National Natural Science Foundation of China (Grant No. U21B2020).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Song, D., Gao, D., Liu, G., Li, X. (2024). FashionGPT: A Large Vision-Language Model for Enhancing Fashion Understanding. In: Wand, M., Malinovská, K., Schmidhuber, J., Tetko, I.V. (eds) Artificial Neural Networks and Machine Learning – ICANN 2024. ICANN 2024. Lecture Notes in Computer Science, vol 15020. Springer, Cham. https://doi.org/10.1007/978-3-031-72344-5_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-72344-5_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72343-8
Online ISBN: 978-3-031-72344-5
eBook Packages: Computer ScienceComputer Science (R0)