Skip to main content

ComMGAE: Community Aware Masked Graph AutoEncoder

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2024 (ICANN 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15020))

Included in the following conference series:

  • 724 Accesses

Abstract

Independent of graph augmentation techniques, graph autoencoders (GAEs) have yielded promising results in the realm of self-supervised learning. However, GAEs tend to over-emphasize proximity information at the expense of structural information, leading to relatively poor performance on some downstream tasks such as node classification. To address this issue, we propose a novel GAE framework via community, named Community aware Masked Graph AutoEncoder(ComMGAE). Since community represents a high-order structure of a graph, characterized by a group of densely connected nodes, ComMGAE can import structural information from community semantics to the self-supervised generative learning on the graph. Firstly, we partition the community structure by using the community detection algorithm and calculate the community strength. Then we introduce a novel community-guided graph masking strategy to learn more about the graph structure during the encoding process. Moreover, we mask and reconstruct both the structure and attribution of the graph and employ a graph neural network as the decoder to enrich learning representations with compressed information. Finally, experimental results on node classification demonstrate that the proposed ComMGAE preserves both the graph topology and semantic information effectively and outperforms other state-of-the-art baselines on a series of benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashish, V., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30, pp. 5998–6008 (2017)

    Google Scholar 

  2. Xiao, W., et al.: Heterogeneous Graph Attention Network, The Web Conference, abs/1903.07293.: 2022-2032 (2019)

    Google Scholar 

  3. You, J., Liu, B., Ying, Z., Pande, V., Leskovec, J.: Graph convolutional policy network for OAL-directed molecular graph generation. In: Proceedings of the 32nd International Conference Neural Information Processing. System, pp. 6410–6421 (2018)

    Google Scholar 

  4. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, vol. 119, pp. 1597–1607 (2020)

    Google Scholar 

  5. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Computer Vision and Pattern Recognition, pp. 9726–9735 (2020)

    Google Scholar 

  6. You, J., Ying, R., Ren, X., Hamilton, W., Leskovec, J.: GraphRNN: generating realistic graphs with deep auto-regressive models. In: Proceedings of the 35th International Conference on Machine Learning, pp. 5708–5717 (2018)

    Google Scholar 

  7. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

    Article  MathSciNet  Google Scholar 

  8. Petar, V., William, F., Hamilton, W.L., H., Pietro, L., Yoshua, B., Hjelm, R.D.: Deep Graph Infomax. In: International Conference on Learning Representations, abs/1809.10341 (2019)

    Google Scholar 

  9. Jintang, L., et al.: MaskGAE: masked graph modeling meets graph autoencoders, arXiv preprint arXiv:2205.10053 (2022)

  10. Chun, W., Shirui, P., Guodong, L., Xingquan, Z., Jing, J.: MGAE: marginalized graph autoencoder for graph clustering. In: International Conference on Information and Knowledge Management, pp. 889–898 (2017)

    Google Scholar 

  11. Grill, J.-B.,et al.: Bootstrap your own latent: A new approach to self-supervised learning. In: NeurIPS (2020)

    Google Scholar 

  12. Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint arXiv:1611.07308 (2016)

  13. Zhenyu, H., et al.: GraphMAE: self-supervised masked graph autoencoders. In: ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 594–604 (2022)

    Google Scholar 

  14. Yanqiao, Z., Yichen, X., Feng, Y., Qiang, L., Shu, W., Liang, W.: Graph Contrastive Learning with Adaptive Augmentation, The Web Conference, abs/2010.14945: 2069-2080 (2021)

    Google Scholar 

  15. Yuning, Y., Tianlong, C., Yongduo, S., Ting, C., Zhangyang, W., Yang, S.: graph contrastive learning with augmentations. In: Conference on Neural Information Processing Systems, vol. 33, pp. 5812–5823 (2020)

    Google Scholar 

  16. Manessi, F., Rozza, A.: Graph-based neural network models with multiple self-supervised auxiliary tasks. Pattern Recognition Letters (2021)

    Google Scholar 

  17. Nix, D.A., Weigend, A.S.: Estimating the mean and variance of the target probability distribution. In: Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN’94), Orlando, FL, USA, 1994, vol. 1, pp. 55–60 (1994). https://doi.org/10.1109/ICNN.1994.374138.

  18. Traag, V.A., Van Dooren, P., Nesterov, Y.: Narrow scope for resolution-limit-free community detection. Phys. Rev. E 84, 016114 (2011). https://doi.org/10.1103/PhysRevE.84.016114

  19. Traag, V.A., Waltman, L. & van Eck, N.J. From Louvain to Leiden: guaranteeing well-connected communities. Sci Rep 9, 5233 (2019). https://doi.org/10.1038/s41598-019-41695-z

  20. Sobolevsky, S., Campari, R., Belyi, A., Ratti, C.: General optimization technique for high-quality community detection in complex networks. Phys. Rev. E 90(1), 012811 (2014)

    Article  Google Scholar 

  21. Zhilin, Y., William, C., Ruslan, S.: Revisiting Semi-Supervised Learning with Graph Embeddings. Computing Research Repository, abs/1603.08861.: 40–48 (2016)

    Google Scholar 

  22. C. Lee, G., Kurt D., B., Steve, L.: CiteSeer: an automatic citation indexing system. In: ACM International Conference on Digital Libraries, pp. 89–98 (1998)

    Google Scholar 

  23. Shchur, L., Mumme, M., Bojchevski, A., Gunnemann, S.: Pitfalls of graph neural network evaluation. CoRR, abs/1811.05868 (2018)

    Google Scholar 

  24. Hu, W., et al.: Open graph benchmark: datasets for machine learning on graphs. In: Conference on Neural Information Processing Systems, vol. 33, pp. 22118–22133 (2020)

    Google Scholar 

  25. Ryan, R., Nesreen, A.: The network data repository with interactive graph analytics and visualization. In: AAAI Conference on Artificial Intelligence, pp. 4292–4293 (2015)

    Google Scholar 

  26. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXv preprint arXv:1710.10903 (2017)

    Google Scholar 

  27. Keyulu, X., Weihua, H., Jure, L., Stefanie, J.: How Powerful are Graph Neural Networks ?. In: International Conference on Learning Representations, abs/1810.00826 (2019)

    Google Scholar 

  28. Shantanu, T., Corentin, T., Mohammad Gheshlaghi, A., Rémi, M., Petar, V., Michal, V.: Bootstrapped representation learning on graphs. In: International Conference on Learning Representations, abs/2102.06514 (2021)

    Google Scholar 

  29. Fan-Yun, S., Jordan, H., Vikas, V., Jian, T.: InfoGraph: unsupervised and semi-supervised graph-level representation learning via mutual information maximization. In: International Conference on Learning Representations, abs/1908.01000 (2020)

    Google Scholar 

  30. Jun, X., Lirong, W., Jintao, C., Bozhen, H., Li, S.Z.: SimGRACE: a simple framework for graph contrastive learning without data augmentation. In: The Web Conference, pp. 1070–1079 (2022)

    Google Scholar 

  31. Hassani, K., Khasahmadi Amir, H.: Contrastive multi-view representation learning on graphs. Comput. Res. Repository 1, 4116–4126 (2020)

    Google Scholar 

  32. Schulman, J., Moritz, P., Levine, S., Jordan, M.I., Abbeel, P.: High-dimensional continuous control using generalized advantage estimation. In: International Conference on Learning Representations, abs/1506.02438 (2015)

    Google Scholar 

  33. Bhagat, S., Cormode, G., Muthukrishnan, S.: Node classification in social networks. In: Aggarwal, C. (eds.) Social network data analytics, pp. 115–148. Springer, Cham (2011). https://doi.org/10.1007/978-1-4419-8462-3_5

  34. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. TIST 2011, 1–27 (2011)

    Article  Google Scholar 

  35. Zhang, H., Wu, Q., Yan, J., Wipf, D., Yu, P.S.: From canonical correlation analysis to self-supervised graph neural networks. In: NeurIPS (2021)

    Google Scholar 

  36. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077. International World Wide Web Conferences Steering Committee (2015)

    Google Scholar 

  37. Han, C., Ziwen, Z., Yuhua, L., Yixiong, Z., Ruixuan, L., Rui, Z.: CSGCL: Community-Strength-Enhanced Graph Contrastive Learning, Computing Research Repository, abs/2305.04658: 2059-2067 (2023)

    Google Scholar 

  38. Pan, S., Hu, R., Long, G., Jiang, J., Yao, L., Zhang, C.: Adversarially regularized graph autoencoder for graph embedding. In: IJCAI. ijcai.org, pp. 2609–2615 (2018)

    Google Scholar 

  39. Duran, A.G., Niepert, M.: Learning graph representations with embedding propagation. In: NeurIPS (2017)

    Google Scholar 

  40. Park, J., Lee, M., Chang, H.J., Lee, K., Choi, J.Y.: Symmetric graph convolutional autoencoder for unsupervised graph representation learning. In: ICCV (2019)

    Google Scholar 

  41. Salehi, A., Davulcu, H.: Graph attention auto-encoders. In: ICTAI. IEEE (2020)

    Google Scholar 

  42. Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: ICML, Vol. 119. PMLR, pp. 4116–4126 (2020)

    Google Scholar 

  43. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT (1). Association for Computational Linguistics, pp. 4171–4186 (2019)

    Google Scholar 

  44. He, K., Chen, X., Xie, S., Li, Y., Dollá¡r, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: CVPR, pp. 15979–15988. IEEE (2022)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (No.623061062), and Natural Science Foundation of Hubei Province under Grant 2023AFB377.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaohang Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, G., Jin, X., Luo, M., Chen, J., Huang, Z., Wang, J. (2024). ComMGAE: Community Aware Masked Graph AutoEncoder. In: Wand, M., Malinovská, K., Schmidhuber, J., Tetko, I.V. (eds) Artificial Neural Networks and Machine Learning – ICANN 2024. ICANN 2024. Lecture Notes in Computer Science, vol 15020. Springer, Cham. https://doi.org/10.1007/978-3-031-72344-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72344-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72343-8

  • Online ISBN: 978-3-031-72344-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics