Skip to main content

Predicting Deterioration in Mild Cognitive Impairment with Survival Transformers, Extreme Gradient Boosting and Cox Proportional Hazard Modelling

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2024 (ICANN 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15023))

Included in the following conference series:

  • 521 Accesses

Abstract

The paper proposes a novel approach of survival transformers and extreme gradient boosting models in predicting cognitive deterioration in individuals with mild cognitive impairment (MCI) using metabolomics data in the ADNI cohort. By leveraging advanced machine learning and transformer-based techniques applied in survival analysis, the proposed approach highlights the potential of these techniques for more accurate early detection and intervention in Alzheimer’s dementia disease. This research also underscores the importance of non-invasive biomarkers and innovative modelling tools in enhancing the accuracy of dementia risk assessments, offering new avenues for clinical practice and patient care. A comprehensive Monte Carlo simulation procedure consisting of 100 repetitions of a nested cross-validation in which models were trained and evaluated, indicates that the survival machine learning models based on Transformer and XGBoost achieved the highest mean C-index performances, namely 0.85 and 0.8, respectively, and that they are superior to the conventional survival analysis Cox Proportional Hazards model which achieved a mean C-Index of 0.77. Moreover, based on the standard deviations of the C-Index performances obtained in the Monte Carlo simulation, we established that both survival machine learning models above are more stable than the conventional statistical model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alzheimer’s Disease Neuroimaging Initiative. https://adni.loni.usc.edu/about/

  2. Dementia Statistics Hub. https://dementiastatistics.org/

  3. scikit-learn. https://scikit-learn.org/stable/

  4. skrebate \(\cdot \) PyPI. https://pypi.org/project/skrebate/

  5. Xgboost. https://xgboost.readthedocs.io

  6. Barnwal, A., Cho, H., Hocking, T.: Survival regression with accelerated failure time model in XGBoost 31(4), 1292–1302 (2022). https://doi.org/10.1080/10618600.2022.2067548

  7. Billichová, M., Coan, L.J., Czanner, S., Kováčová, M., Sharifian, F., Czanner, G.: Comparing the performance of statistical, machine learning, and deep learning algorithms to predict time-to-event: a simulation study for conversion to mild cognitive impairment 19(1) (2024). https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0297190

  8. Collins, G.S., Reitsma, J.B., Altman, D.G., Moons, K.G.M.: Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement 102(3), 148–158 (2015). https://doi.org/10.1002/bjs.9736

  9. Davidson-Pilon, C.: Lifelines, survival analysis in Python (2024). https://lifelines.readthedocs.io/en/latest/

  10. Ding, K., Zhou, M., Metaxas, D.N., Zhang, S.: Pathology-and-genomics multimodal transformer for survival outcome prediction (2023). http://arxiv.org/abs/2307.11952

  11. Guo, Y., et al.: Plasma proteomic profiles predict future dementia in healthy adults 4(2), 247–260 (2024). https://www.nature.com/articles/s43587-023-00565-0

  12. Hu, S., Fridgeirsson, E.A., van Wingen, G., Welling, M.: Transformer-based deep survival analysis (2021)

    Google Scholar 

  13. Huynh, K., Heart, B.: Lipidomic analysis of the ADNI1, 2 and GO cohorts

    Google Scholar 

  14. Alzheimer’s Disease International: World alzheimer report 2023: reducing dementia risk: never too early, never too late. https://www.alzint.org/resource/world-alzheimer-report-2023/

  15. Machado-Fragua, M.D., et al.: Circulating serum metabolites as predictors of dementia: a machine learning approach in a 21-year follow-up of the whitehall II cohort study 20(1), 334 (2022). https://doi.org/10.1186/s12916-022-02519-6

  16. Mirabnahrazam, G., et al.: Predicting time-to-conversion for dementia of Alzheimer’s type using multi-modal deep survival analysis 121, 139–156 (2023). https://www.sciencedirect.com/science/article/pii/S0197458022002196

  17. Musto, H., Stamate, D., Logofatu, D., Ouarbya, L.: On a survival gradient boosting, neural network and cox PH based approach to predicting dementia diagnosis risk on ADNI, pp. 1–7. IEEE Computer Society (2023). https://doi.ieeecomputersociety.org/10.1109/BIBM58861.2023.10419115

  18. Musto, H., Stamate, D., Pu, I., Stahl, D.: A machine learning approach for predicting deterioration in Alzheimer’s disease. In: 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1443–1448. IEEE (2021). https://ieeexplore.ieee.org/document/9679955/

  19. Musto, H., Stamate, D., Pu, I., Stahl, D.: Predicting Alzheimers disease diagnosis risk over time with survival machine learning on the ADNI cohort (2023). http://arxiv.org/abs/2306.10326

  20. Qiang, Y.X., et al.: Plasma metabolic profiles predict future dementia and dementia subtypes: a prospective analysis of 274,160 participants 16(1), 16 (2024). https://doi.org/10.1186/s13195-023-01379-3

  21. Sarica, A., Aracri, F., Bianco, M.G., Arcuri, F., Quattrone, A., Quattrone, A., for the Alzheimer’s Disease Neuroimaging Initiative: Explainability of random survival forests in predicting conversion risk from mild cognitive impairment to Alzheimer’s disease 10(1), 31 (2023). https://doi.org/10.1186/s40708-023-00211-w

  22. Schmid, M., Wright, M.N., Ziegler, A.: On the use of Harrell’s C for clinical risk prediction via random survival forests 63, 450–459 (2016). https://www.sciencedirect.com/science/article/pii/S0957417416303633

  23. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking the human out of the loop: a review of Bayesian optimization 104(1), 148–175 (2016). https://ieeexplore.ieee.org/document/7352306. Conference Name: Proceedings of the IEEE

  24. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms (2012). http://arxiv.org/abs/1206.2944

  25. Spooner, A., et al.: A comparison of machine learning methods for survival analysis of high-dimensional clinical data for dementia prediction 10(1), 20410 (2020). https://www.nature.com/articles/s41598-020-77220-w

  26. Stamate, D., Lovestone, S., Legido-Quigley, C.: A metabolite-based machine learning approach to diagnose Alzheimer-type dementia in blood: results from the European medical information framework for Alzheimer disease biomarker discovery cohort 5(1), 933–938 (2019). https://onlinelibrary.wiley.com/doi/abs/10.1016/j.trci.2019.11.001

  27. Stamate, D., Musto, H., Ajnakina, O., Stahl, D.: Predicting risk of dementia with survival machine learning and statistical methods: results on the English longitudinal study of ageing cohort (2023). https://ui.adsabs.harvard.edu/abs/2023arXiv230610330S

  28. Steyerberg, E.W.: Clinical Prediction Models, 2nd edn. Springer, New York (2019). https://doi.org/10.1007/978-0-387-77244-8.

  29. Teunissen, C.E., et al.: Blood-based biomarkers for Alzheimer’s disease: towards clinical implementation 21(1), 66–77 (2022). https://doi.org/10.1016/S1474-4422(21)00361-6

  30. Urbanowicz, R.J., Olson, R.S., Schmitt, P., Meeker, M., Moore, J.H.: Benchmarking relief-based feature selection methods for bioinformatics data mining (2018). http://arxiv.org/abs/1711.08477

  31. Vaswani, A., et al.: Attention is all you nee (2023). https://doi.org/10.48550/arXiv.1706.03762. http://arxiv.org/abs/1706.03762

  32. Wang, Z., Sun, J.: SurvTRACE: transformers for survival analysis with competing events. In: Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, pp. 1–9 (2022). http://arxiv.org/abs/2110.00855

  33. Wiegrebe, S., Kopper, P., Sonabend, R., Bischl, B., Bender, A.: Deep learning for survival analysis: a review 57(3), 65 (2024). http://arxiv.org/abs/2305.14961

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Musto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Musto, H., Stamate, D., Logofatu, D., Stahl, D. (2024). Predicting Deterioration in Mild Cognitive Impairment with Survival Transformers, Extreme Gradient Boosting and Cox Proportional Hazard Modelling. In: Wand, M., Malinovská, K., Schmidhuber, J., Tetko, I.V. (eds) Artificial Neural Networks and Machine Learning – ICANN 2024. ICANN 2024. Lecture Notes in Computer Science, vol 15023. Springer, Cham. https://doi.org/10.1007/978-3-031-72353-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72353-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72352-0

  • Online ISBN: 978-3-031-72353-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics