Skip to main content

SCANet: Dual Attention Network for Alzheimer’s Disease Diagnosis Based on Gated Residual and Spatial Asymmetry Mechanisms

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2024 (ICANN 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15023))

Included in the following conference series:

  • 457 Accesses

Abstract

Convolutional neural networks, combined with attention mechanisms, can effectively extract global and local features from structural magnetic resonance images to aid in the diagnosis of Alzheimer’s disease (AD). However, the attention mechanism still presents challenges in AD diagnosis. First, channel attention degradation and feature correction processes lead to the loss of important features. Second, capturing directional information during spatial attention correction is difficult. Therefore, this study proposes the Spatial and Channel attention Network (SCANet) based on Gated Residual Channel Attention (GRCA) and Spatial Asymmetric Attention (SAS) blocks. The GRCA block is based on the normalized attention jumping mechanism, which reduces attentional decay that occurs when the network is too deep, and the block can be calibrated to further enhance important features and suppress non-important features. The SAS block uses asymmetric convolution to model the horizontal and vertical direction-related attention information generated by different pooling methods. It adopts a cross-fertilization strategy to fuse the attention direction information generated by different asymmetric convolutions with different pooling methods, obtaining an attention vector with direction information. The SCANet model was validated through various experiments. The results of five-fold cross-validation showed that SCANet has an average classification accuracy of 97.84% for AD and normal control, which is better than that of the comparison models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdelaziz, M., Wang, T., Elazab, A.: Alzheimer’s disease diagnosis framework from incomplete multimodal data using convolutional neural networks. J. Biomed. Inform. 121, 103863 (2021). https://doi.org/10.1016/j.jbi.2021.103863

    Article  Google Scholar 

  2. Benavoli, A., Corani, G., Mangili, F.: Should we really use post-hoc tests based on mean-ranks? J. Mach. Learn. Res. 17(1), 152–161 (2016)

    MathSciNet  Google Scholar 

  3. Chan, H.P., Hadjiiski, L.M., Samala, R.K.: Computer-aided diagnosis in the era of deep learning. Med. Phys. 47(5), e218–e227 (2020). https://doi.org/10.1002/mp.13764

    Article  Google Scholar 

  4. da Silveira Souza, B., Poloni, K.M., Ferrari, R.J.: Detector of 3-D salient points based on the dual-tree complex wavelet transform for the positioning of hippocampi meshes in magnetic resonance images. J. Neurosci. Methods 341, 108789 (2020). https://doi.org/10.1016/j.jneumeth.2020.108789

    Article  Google Scholar 

  5. Demiar, J., Schuurmans, D.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7(1), 1–30 (2006)

    MathSciNet  Google Scholar 

  6. Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., Sun, J.: Repvgg: making VGG-style convnets great again. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13728–13737 (2021). https://doi.org/10.1109/CVPR46437.2021.01352

  7. Feng, J., Zhang, S.W., Chen, L., Xia, J.: Alzheimer’s disease classification using features extracted from nonsubsampled conto***et subband-based individual networks. Neurocomputing 421, 260–272 (2021). https://doi.org/10.1016/j.neucom.2020.09.012

    Article  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  9. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. CoRR abs/1704.04861 (2017)

    Google Scholar 

  10. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018). https://doi.org/10.1109/CVPR.2018.00745

  11. Khan, N.M., Abraham, N., Hon, M.: Transfer learning with intelligent training data selection for prediction of Alzheimer’s disease. IEEE Access 7, 72726–72735 (2019). https://doi.org/10.1109/ACCESS.2019.2920448

    Article  Google Scholar 

  12. Li, H., et al.: Attention-based and micro designed EfficientNetB2 for diagnosis of Alzheimer’s disease. Biomed. Signal Process. Control 82, 104571 (2023). https://doi.org/10.1016/j.bspc.2023.104571

    Article  Google Scholar 

  13. Li, K., et al.: Gray matter structural covariance networks changes along the Alzheimer’s disease continuum. NeuroImage: Clin. 23, 101828 (2019). https://doi.org/10.1016/j.nicl.2019.101828

  14. Lian, C., Liu, M., Zhang, J., Shen, D.: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural mri. IEEE Trans. Pattern Anal. Mach. Intell. 42(4), 880–893 (2020). https://doi.org/10.1109/TPAMI.2018.2889096

    Article  Google Scholar 

  15. Liu, J., Pan, Y., Wu, F.X., Wang, J.: Enhancing the feature representation of multi-modal MRI data by combining multi-view information for MCI classification. Neurocomputing 400, 322–332 (2020). https://doi.org/10.1016/j.neucom.2020.03.006

    Article  Google Scholar 

  16. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: Shufflenet v2: practical guidelines for efficient CNN architecture design. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 116–131 (2018)

    Google Scholar 

  17. Marcus, D.S., Fotenos, A.F., Csernansky, J.G., Morris, J.C., Buckner, R.L.: Open access series of imaging studies: longitudinal MRI data in nondemented and demented older adults. J. Cogn. Neurosci. 22(12), 2677–2684 (2010). https://doi.org/10.1162/jocn.2009.21407

  18. Mueller, S.G., et al.: The Alzheimer’s disease neuroimaging initiative. Neuroimaging Clin. N. Am. 15(4), 869–877 (2005). https://doi.org/10.1016/j.nic.2005.09.008

  19. Peng, Z., Huang, W., Gu, S., Xie, L., Wang, Y., Jiao, J., Ye, Q.: Conformer: local features coupling global representations for visual recognition (2021). https://doi.org/10.1109/ICCV48922.2021.00042

  20. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  21. Small, G.W., Greenfield, S.: Current and future treatments for Alzheimer disease. Am. J. Geriatr. Psychiatry 1101–1105 (2015)

    Google Scholar 

  22. So, J.H., Madusanka, N., Choi, H.K., Choi, B.K., Park, H.G.: Deep learning for Alzheimers disease classification using texture features. Curr. Med. Imaging Rev. 15(7), 689–698 (2019). https://doi.org/10.2174/1573405615666190404163233

    Article  Google Scholar 

  23. Sun, Z., Qiao, Y., Lelieveldt, B.P., Staring, M.: Integrating spatial-anatomical regularization and structure sparsity into SVM: improving interpretation of Alzheimer’s disease classification. Neuroimage 178, 445–460 (2018). https://doi.org/10.1016/j.neuroimage.2018.05.051

    Article  Google Scholar 

  24. Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., Fergus, R.: Regularization of neural networks using dropconnect. In: International Conference on Machine Learning, pp. 1058–1066. PMLR (2013)

    Google Scholar 

  25. Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q.: ECA-Net: efficient channel attention for deep convolutional neural networks. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11531–11539 (2020). https://doi.org/10.1109/CVPR42600.2020.01155

  26. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module (2018)

    Google Scholar 

  27. Wu, Y., Zhou, Y., Zeng, W., Qian, Q., Song, M.: An attention-based 3D CNN with multi-scale integration block for Alzheimer’s disease classification. IEEE J. Biomed. Health Inform. 26(11), 5665–5673 (2022). https://doi.org/10.1109/JBHI.2022.3197331

    Article  Google Scholar 

  28. Yan, B., et al.: Quantifying the impact of pyramid squeeze attention mechanism and filtering approaches on Alzheimer’s disease classification. Comput. Biol. Med. 148, 105944 (2022). https://doi.org/10.1016/j.compbiomed.2022.105944

  29. Yang, Z., Zhu, L., Wu, Y., Yang, Y.: Gated channel transformation for visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11794–11803 (2020)

    Google Scholar 

  30. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

    Google Scholar 

  31. Zhao, X., Ang, C.K.E., Acharya, U.R., Cheong, K.H.: Application of artificial intelligence techniques for the detection of Alzheimer’s disease using structural MRI images. Biocybern. Biomed. Eng. 41(2), 456–473 (2021). https://doi.org/10.1016/j.bbe.2021.02.006

    Article  Google Scholar 

  32. Zhu, K., Wu, J.: Residual attention: a simple but effective method for multi-label recognition. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 184–193 (2021). https://doi.org/10.1109/ICCV48922.2021.00025

  33. Zhu, W., Sun, L., Huang, J., Han, L., Zhang, D.: Dual attention multi-instance deep learning for Alzheimer’s disease diagnosis with structural MRI. IEEE Trans. Med. Imaging 40(9), 2354–2366 (2021). https://doi.org/10.1109/TMI.2021.3077079

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Natural Science Foundation of China (82074003, 82174083), Chinese medicine (ethnic medicine) frontier research and development innovation team of Sichuan Administration of Traditional Chinese Medicine (No. 2022C010), the Sichuan Provincial Program of Traditional Chinese Medicine of China (2024ZD014), the Science and Technology Project in Sichuan (2022NSFSC0507, 2024YFFK0362), and the Fundamental Research Funds for the Central Universities of China, Southwest Minzu University (ZYN2023098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, D. et al. (2024). SCANet: Dual Attention Network for Alzheimer’s Disease Diagnosis Based on Gated Residual and Spatial Asymmetry Mechanisms. In: Wand, M., Malinovská, K., Schmidhuber, J., Tetko, I.V. (eds) Artificial Neural Networks and Machine Learning – ICANN 2024. ICANN 2024. Lecture Notes in Computer Science, vol 15023. Springer, Cham. https://doi.org/10.1007/978-3-031-72353-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72353-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72352-0

  • Online ISBN: 978-3-031-72353-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics