Skip to main content

Depression Detection Based on Multilevel Semantic Features

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2024 (ICANN 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15023))

Included in the following conference series:

  • 456 Accesses

Abstract

Depression is a common mental health disorder that can affect a person’s mood, thoughts, and behavior. In this paper, we propose a depression detection method based on multilevel semantic features. This method consists of a character semantic feature extraction module, a keyword semantic feature extraction module, and a global semantic vector, which extract depression features from different perspectives in the text. Meanwhile, an Inception module is introduced into TextCNN to capture feature information at different scales. To evaluate the effectiveness of this method, we collected a dataset from a psychiatric hospital specializing in mental disorders, including symptom descriptions of depression patients. We conducted experiments on this dataset and the publicly available dataset CMDC, comparing our method with mainstream depression detection algorithms. Our method achieved accuracies of 0.97 and 0.94 on these two datasets, respectively, demonstrating that our method can effectively identify depression patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beck, A.T., Alford, B.A.: Depression: Causes and Treatment. University of Pennsylvania Press, Philadelphia (2009)

    Book  Google Scholar 

  2. Lu, J., et al.: Prevalence of depressive disorders and treatment in china: a cross-sectional epidemiological study. Lancet Psychiatry 8(11), 981–990 (2021)

    Article  Google Scholar 

  3. Chen, Y., et al.: Patterns and correlates of major depression in Chinese adults: a cross-sectional study of 0.5 million men and women. Psychol. Med. 47(5), 958–970 (2017)

    Article  Google Scholar 

  4. Kroenke, K., Spitzer, R.L., Williams, J.B.: The PHQ-9: validity of a brief depression severity measure. J. Gen. Intern. Med. 16(9), 606–613 (2001)

    Article  Google Scholar 

  5. Carrozzino, D., Patierno, C., Fava, G.A., Guidi, J.: The Hamilton rating scales for depression: a critical review of clinimetric properties of different versions. Psychother. Psychosom. 89(3), 133–150 (2020)

    Article  Google Scholar 

  6. Schatzberg, A.F.: Scientific issues relevant to improving the diagnosis, risk assessment, and treatment of major depression. Am. J. Psychiatry 176(5), 342–347 (2019)

    Article  Google Scholar 

  7. Zou, B., et al.: Semi-structural interview-based Chinese multimodal depression corpus towards automatic preliminary screening of depressive disorders. IEEE Trans. Affect. Comput. 14, 2823–2838 (2022)

    Article  Google Scholar 

  8. Nobles, A.L., Glenn, J.J., Kowsari, K., Teachman, B.A., Barnes, L.E.: Identification of imminent suicide risk among young adults using text messages. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–11 (2018)

    Google Scholar 

  9. Guo, Z., Ding, N., Zhai, M., Zhang, Z., Li, Z.: Leveraging domain knowledge to improve depression detection on Chinese social media. IEEE Trans. Comput. Soc. Syst. 10, 1528–1536 (2023)

    Article  Google Scholar 

  10. Al-Mosaiwi, M., Johnstone, T.: In an absolute state: elevated use of absolutist words is a marker specific to anxiety, depression, and suicidal ideation. Clin. Psychol. Sci. 6(4), 529–542 (2018)

    Article  Google Scholar 

  11. Tadesse, M.M., Lin, H., Xu, B., Yang, L.: Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44 883–44 893 (2019)

    Google Scholar 

  12. Shen, T., et al.: Cross-domain depression detection via harvesting social media. In: International Joint Conferences on Artificial Intelligence (2018)

    Google Scholar 

  13. Guohou, S., Lina, Z., Dongsong, Z.: What reveals about depression level? The role of multimodal features at the level of interview questions. Inf. Manage. 57(7), 103349 (2020)

    Article  Google Scholar 

  14. Orabi, A.H., Buddhitha, P., Orabi, M.H., Inkpen, D.: Deep learning for depression detection of twitter users. In: Proceedings of the Fifth Workshop on Computational Linguistics and Clinical Psychology: From Keyboard to Clinic, pp. 88–97 (2018)

    Google Scholar 

  15. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of NAACL-HLT, vol. 1, p. 2 (2019)

    Google Scholar 

  16. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, vol. 26 (2013)

    Google Scholar 

  17. Sparck Jones, K.: A statistical interpretation of term specificity and its application in retrieval. J. Documentation 28(1), 11–21 (1972)

    Google Scholar 

  18. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882 (2014)

  19. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  20. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 1–27 (2011)

    Article  Google Scholar 

  21. Dinkel, H., Wu, M., Yu, K.: Text-based depression detection on sparse data. arXiv preprint arXiv:1904.05154 (2019)

  22. Shen, Y., Yang, H., Lin, L.: Automatic depression detection: An emotional audio-textual corpus and a GRU/BILSTM-based model. In: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6247–6251. IEEE (2022)

    Google Scholar 

  23. Zeberga, K., et al.: A novel text mining approach for mental health prediction using bi-LSTM and BERT model. In: Computational Intelligence and Neuroscience, vol. 2022 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keji Mao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yao, X., Ying, L., He, T., Ren, L., Xu, R., Mao, K. (2024). Depression Detection Based on Multilevel Semantic Features. In: Wand, M., Malinovská, K., Schmidhuber, J., Tetko, I.V. (eds) Artificial Neural Networks and Machine Learning – ICANN 2024. ICANN 2024. Lecture Notes in Computer Science, vol 15023. Springer, Cham. https://doi.org/10.1007/978-3-031-72353-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72353-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72352-0

  • Online ISBN: 978-3-031-72353-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics