Skip to main content

Identify Disease-Associated MiRNA-miRNA Pairs Through Deep Tensor Factorization and Semi-supervised Learning

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2024 (ICANN 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15023))

Included in the following conference series:

  • 590 Accesses

Abstract

MicroRNAs (miRNAs) are a class of small non-coding RNAs that play a significant regulatory role in the development of disease. Researchers have explored a variety of computational methods to predict the association between miRNA and disease, which accelerates the discovery of biomarkers. However, current studies mainly focus on binary relations, ignoring the impact of synergistic miRNAs on disease. Moreover, the acquisition of negative sets also hinders the improvement of relevant algorithms. To address these issues, we propose a novel tensor-based framework called TF-SSL to predict disease-associated miRNA-miRNA pairs. Reliable negative samples are extracted by combining semi-supervised learning and deep clustering. Afterward, TF-SSL utilizes self-supervised graph attention aggregation layer to efficiently represent node features over complicated biological networks. The learned features of miRNA and disease are used to reconstruct the association tensor for discovering possible triple relationships. Empirical results showed that the proposed method achieved state-of-the-art performance under five-fold cross-validation. Case studies on three complex diseases further demonstrated the effectiveness of TF-SSL in identifying potential disease-related miRNA-miRNA pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, X., Huang, L., Xie, D., Zhao, Q.: EGBMMDA: extreme gradient boosting machine for miRNA-disease association prediction. Cell Death Dis. 9(1), 3 (2018). https://doi.org/10.1038/s41419-017-0003-x

    Article  Google Scholar 

  2. Chen, X., Sun, L.G., Zhao, Y.: NCMCMDA: miRNA-disease association prediction through neighborhood constraint matrix completion. Brief. Bioinform. 22(1), 485–496 (2021). https://doi.org/10.1093/bib/bbz159

    Article  Google Scholar 

  3. Chen, X., Wang, C.C., Yin, J., You, Z.H.: Novel human miRNA-disease association inference based on random forest. Mol. Therapy - Nucleic Acids 13, 568–579 (2018). https://doi.org/10.1016/j.omtn.2018.10.005

    Article  Google Scholar 

  4. Chen, X., Wang, L., Qu, J., Guan, N.N., Li, J.Q.: Predicting miRNA-disease association based on inductive matrix completion. Bioinformatics 34(24), 4256–4265 (2018). https://doi.org/10.1093/bioinformatics/bty503

    Article  Google Scholar 

  5. Huang, F., Yue, X., Xiong, Z., Yu, Z., Liu, S., Zhang, W.: Tensor decomposition with relational constraints for predicting multiple types of microRNA-disease associations. Brief. Bioinform. 22(3), bbaa140 (2021). https://doi.org/10.1093/bib/bbaa140

  6. Huang, G.L., et al.: Mir-200 family and cancer: from a meta-analysis view. Mol. Aspects Med. 70, 57–71 (2019). https://doi.org/10.1016/j.mam.2019.09.005

    Article  Google Scholar 

  7. Huang, Z., et al.: HMDD v3.0: a database for experimentally supported human microRNA-disease associations. Nucleic Acids Res. 47(D1), D1013–D1017 (2019). https://doi.org/10.1093/nar/gky1010

  8. Kitamura, K., et al.: Mir-134/487b/655 cluster regulates tgf-\(\beta \)-induced epithelial-mesenchymal transition and drug resistance to gefitinib by targeting magi2 in lung adenocarcinoma cells. Mol. Cancer Ther. 13(2), 444–453 (2014). https://doi.org/10.1158/1535-7163.MCT-13-0448

    Article  Google Scholar 

  9. Kozomara, A., Birgaoanu, M., Griffiths-Jones, S.: miRBase: from microRNA sequences to function. Nucleic Acids Res. 47(D1), D155–D162 (2019). https://doi.org/10.1093/nar/gky1141

    Article  Google Scholar 

  10. Liu, P., Luo, J., Chen, X.: miRCom: tensor completion integrating multi-view information to deduce the potential disease-related miRNA-miRNA pairs. IEEE/ACM Trans. Comput. Biol. Bioinform./IEEE. ACM (2020). https://doi.org/10.1109/TCBB.2020.3037331

  11. Liu, Q., Yang, Z., Wang, L., Zhang, Y., Lin, H., Ning, J.: SGAT: a self-supervised graph attention network for biomedical relation extraction. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 698–701 (2021). https://doi.org/10.1109/BIBM52615.2021.9669699

  12. Liu, W., et al.: Identification of miRNA-disease associations via deep forest ensemble learning based on autoencoder. Brief. Bioinform. 23(3), bbac104 (2022). https://doi.org/10.1093/bib/bbac104

  13. Luo, J., Lai, Z., Shen, C., Liu, P., Shi, H.: Graph attention mechanism-based deep tensor factorization for predicting disease-associated miRNA-miRNA pairs. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 189–196 (2021). https://doi.org/10.1109/BIBM52615.2021.9669673

  14. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–453 (1970). https://doi.org/10.1016/0022-2836(70)90057-4

    Article  Google Scholar 

  15. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. arXiv:1912.01703 (2019). https://doi.org/10.48550/arXiv.1912.01703

  16. Petar, V., Guillem, C., Arantxa, C., Adriana, R., Pietro, L., Yoshua, B.: Graph attention networks. arXiv:1710.10903 (2017). https://doi.org/10.48550/arXiv.1710.10903

  17. Slack, F.J., Chinnaiyan, A.M.: The role of non-coding RNAs in oncology. Cell 179(5), 1033–1055 (2019). https://doi.org/10.1016/j.cell.2019.10.017

    Article  Google Scholar 

  18. Stephan, R., Oleksandr, S., Stephan, G.: Introduction to tensor decompositions and their applications in machine learning. arXiv:1711.10781 (2017). https://doi.org/10.48550/arXiv.1711.10781

  19. Sun, Z., Huang, S., Jiang, P., Hu, P.: DTF: deep tensor factorization for predicting anticancer drug synergy. Bioinformatics 36(16), 4483–4489 (2020). https://doi.org/10.1093/bioinformatics/btaa287

    Article  Google Scholar 

  20. Tang, X., Luo, J., Shen, C., Lai, Z.: Multi-view multichannel attention graph convolutional network for mirna-disease association prediction. Brief. Bioinform. 22(6), bbab174 (2021). https://doi.org/10.1093/bib/bbab174

  21. Wang, D., Wang, J., Lu, M., Song, F., Cui, Q.: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases. Bioinformatics 26(13), 1644–1650 (2010). https://doi.org/10.1093/bioinformatics/btq241

    Article  Google Scholar 

  22. Wang, S., et al.: SGAEMDA: predicting miRNA-disease associations based on stacked graph autoencoder. Cells 11(24) (2022). https://doi.org/10.3390/cells11243984

  23. Wang, W., Chen, H.: Predicting miRNA-disease associations based on lncRNA-miRNA interactions and graph convolution networks. Briefings in Bioinformatics 24(1), bbac495 (2023). https://doi.org/10.1093/bib/bbac495

  24. Xiao, Q., Luo, J., Liang, C., Cai, J., Ding, P.: A graph regularized non-negative matrix factorization method for identifying microRNA-disease associations. Bioinformatics 34(2), 239–248 (2018). https://doi.org/10.1093/bioinformatics/btx545

    Article  Google Scholar 

  25. Xu, F., et al.: DBDEMC 3.0: functional exploration of differentially expressed miRNAs in cancers of human and model organisms. Genom. Proteom. Bioinform. 20(3), 446–454 (2022). https://doi.org/10.1016/j.gpb.2022.04.006

  26. Yoder, J., Priebe, C.E.: Semi-supervised k-means++. J. Stat. Comput. Simul. 87(13), 2597–2608 (2017). https://doi.org/10.1080/00949655.2017.1327588

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruochen Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, R., Pan, J., Xu, S. (2024). Identify Disease-Associated MiRNA-miRNA Pairs Through Deep Tensor Factorization and Semi-supervised Learning. In: Wand, M., Malinovská, K., Schmidhuber, J., Tetko, I.V. (eds) Artificial Neural Networks and Machine Learning – ICANN 2024. ICANN 2024. Lecture Notes in Computer Science, vol 15023. Springer, Cham. https://doi.org/10.1007/978-3-031-72353-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72353-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72352-0

  • Online ISBN: 978-3-031-72353-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics