Skip to main content

RD-Crack: A Study of Concrete Crack Detection Guided by a Residual Neural Network Improved Based on Diffusion Modeling

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2024 (ICANN 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15024))

Included in the following conference series:

  • 556 Accesses

Abstract

Automated crack detection in concrete structures is an important aspect of structural health monitoring (SHM) to ensure safety and durability. Traditional methods mainly rely on manual inspection, which suffers from subjectivity and inefficiency challenges. To address these issues, machine learning, especially deep learning techniques, has been gradually adopted to improve accuracy and reduce reliance on large amounts of labeled data. This paper introduces RD-Crack, an innovative concrete crack detection method. Our RD-Crack framework combines the encoder with ResNeXt and extrusion excitation modules for feature extraction and uses a diffusion model for parameter optimization to achieve accurate crack detection in complex engineering environments. Experimental results show that our RD-Crack outperforms other state-of-the-art methods in comprehensive performance.

Y. Hauang, X. Lai, Z. Wang—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adhikari, R., Moselhi, O., Bagchi, A.: Image-based retrieval of concrete crack properties for bridge inspection. Autom. Constr. 39, 180–194 (2014)

    Article  Google Scholar 

  2. Baduge, S.K., et al.: Assessment of crack severity of asphalt pavements using deep learning algorithms and geospatial system. Constr. Build. Mater. 401, 132684 (2023)

    Article  Google Scholar 

  3. Barazzetti, L., Scaioni, M.: Crack measurement: development, testing and applications of an automatic image-based algorithm. ISPRS J. Photogramm. Remote. Sens. 64(3), 285–296 (2009)

    Article  Google Scholar 

  4. Broberg, P.: Surface crack detection in welds using thermography. Ndt E Int. 57, 69–73 (2013)

    Article  Google Scholar 

  5. Choi, W., Cha, Y.J.: SDDNet: real-time crack segmentation. IEEE Trans. Industr. Electron. 67(9), 8016–8025 (2019)

    Article  Google Scholar 

  6. Dhital, D., Lee, J.R.: A fully non-contact ultrasonic propagation imaging system for closed surface crack evaluation. Exp. Mech. 52, 1111–1122 (2012)

    Article  Google Scholar 

  7. Dong, C.Z., Catbas, F.N.: A review of computer vision-based structural health monitoring at local and global levels. Struct. Health Monit. 20(2), 692–743 (2021)

    Article  Google Scholar 

  8. Farrar, C.R., Worden, K.: An introduction to structural health monitoring. Philos. Trans. R. Soc. Math. Phy. Eng. Sci. 365(1851), 303–315 (2007)

    Article  Google Scholar 

  9. Geetha, G.K., Sim, S.H.: Fast identification of concrete cracks using 1D deep learning and explainable artificial intelligence-based analysis. Autom. Constr. 143, 104572 (2022)

    Article  Google Scholar 

  10. Gharehbaghi, V.R., et al.: A critical review on structural health monitoring: definitions, methods, and perspectives. Arch. Comput. Methods Eng. 29(4), 2209–2235 (2022)

    Article  Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  12. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)

    Google Scholar 

  13. Ho, S., White, R., Lucas, J.: A vision system for automated crack detection in welds. Meas. Sci. Technol. 1(3), 287 (1990)

    Article  Google Scholar 

  14. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  15. Iraniparast, M., Ranjbar, S., Rahai, M., Nejad, F.M.: Surface concrete cracks detection and segmentation using transfer learning and multi-resolution image processing. In: Structures. vol. 54, pp. 386–398. Elsevier (2023)

    Google Scholar 

  16. Iyer, S., Sinha, S.K.: A robust approach for automatic detection and segmentation of cracks in underground pipeline images. Image Vis. Comput. 23(10), 921–933 (2005)

    Article  Google Scholar 

  17. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–678 (2014)

    Google Scholar 

  18. Jia, Y., Tang, L., Xu, B., Zhang, S.: Crack detection in concrete parts using vibrothermography. J. Nondestr. Eval. 38, 1–11 (2019)

    Article  Google Scholar 

  19. Jian, Z., Liu, J.: Cross teacher pseudo supervision: enhancing semi-supervised crack segmentation with consistency learning. Adv. Eng. Inform. 59, 102279 (2024)

    Article  Google Scholar 

  20. Kaseko, M.S., Ritchie, S.G.: A neural network-based methodology for pavement crack detection and classification. Transp. Res. Part C: Emerg. Technol. 1(4), 275–291 (1993)

    Article  Google Scholar 

  21. Koch, C., Georgieva, K., Kasireddy, V., Akinci, B., Fieguth, P.: A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure. Adv. Eng. Inform. 29(2), 196–210 (2015)

    Article  Google Scholar 

  22. Li, G., Zheng, Y., Cui, J., Gai, W., Qi, M.: DIM-UNet: boosting medical image segmentation via diffusion models and information bottleneck theory mixed with MLP. Biomed. Signal Process. Control 91, 106026 (2024)

    Article  Google Scholar 

  23. Luo, S., Su, Y., Peng, X., Wang, S., Peng, J., Ma, J.: Antigen-specific antibody design and optimization with diffusion-based generative models for protein structures. Adv. Neural. Inf. Process. Syst. 35, 9754–9767 (2022)

    Google Scholar 

  24. Moon, H., Jung, H.K., Lee, C., Park, G.: Camera image processing for automated crack detection of pressed panel products (conference presentation). In: Active and Passive Smart Structures and Integrated Systems 2017, vol. 10164, pp. 53–53. SPIE (2017)

    Google Scholar 

  25. Nishiyama, S., Minakata, N., Kikuchi, T., Yano, T.: Improved digital photogrammetry technique for crack monitoring. Adv. Eng. Inform. 29(4), 851–858 (2015)

    Article  Google Scholar 

  26. O’Brien, D., Osborne, J.A., Perez-Duenas, E., Cunningham, R., Li, Z.: Automated crack classification for the CERN underground tunnel infrastructure using deep learning. Tunn. Undergr. Space Technol. 131, 104668 (2023)

    Article  Google Scholar 

  27. O’Byrne, M., Schoefs, F., Ghosh, B., Pakrashi, V.: Texture analysis based damage detection of ageing infrastructural elements. Comput.-Aid. Civil Infrastruct. Eng. 28(3), 162–177 (2013)

    Article  Google Scholar 

  28. Rabah, M., Elhattab, A., Fayad, A.: Automatic concrete cracks detection and mapping of terrestrial laser scan data. NRIAG J. Astron. Geophys. 2(2), 250–255 (2013)

    Article  Google Scholar 

  29. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  30. Rodríguez-Martín, M., Lagüela, S., González-Aguilera, D., Martínez, J.: Thermographic test for the geometric characterization of cracks in welding using IR image rectification. Autom. Constr. 61, 58–65 (2016)

    Article  Google Scholar 

  31. Sohl-Dickstein, J., Weiss, E.A., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning-vol. 37, pp. 2256–2265 (2015)

    Google Scholar 

  32. Song, Q., Li, J., Li, C., Guo, H., Huang, R.: Fully attentional network for semantic segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 2280–2288 (2022)

    Google Scholar 

  33. Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., Poole, B.: Score-based generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456 (2020)

  34. Sun, L., Shang, Z., Xia, Y., Bhowmick, S., Nagarajaiah, S.: Review of bridge structural health monitoring aided by big data and artificial intelligence: from condition assessment to damage detection. J. Struct. Eng. 146(5), 04020073 (2020)

    Article  Google Scholar 

  35. Wang, X., Yue, Q., Liu, X.: Conditional diffusion model-based generation of speckle patterns for digital image correlation. Opt. Lasers Eng. 175, 107997 (2024)

    Article  Google Scholar 

  36. Xiang, C., Gan, V.J., Guo, J., Deng, L.: Semi-supervised learning framework for crack segmentation based on contrastive learning and cross pseudo supervision. Measurement 217, 113091 (2023)

    Article  Google Scholar 

  37. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)

    Google Scholar 

  38. Yang, F., Zhang, L., Yu, S., Prokhorov, D., Mei, X., Ling, H.: Feature pyramid and hierarchical boosting network for pavement crack detection. IEEE Trans. Intell. Transp. Syst. 21(4), 1525–1535 (2019)

    Article  Google Scholar 

  39. Yehia, S., Landolsi, T., Hassan, M., Hallal, M.: Monitoring of strain induced by heat of hydration, cyclic and dynamic loads in concrete structures using fiber-optics sensors. Measurement 52, 33–46 (2014)

    Article  Google Scholar 

  40. Yokoyama, S., Matsumoto, T.: Development of an automatic detector of cracks in concrete using machine learning. Proc. Eng. 171, 1250–1255 (2017)

    Article  Google Scholar 

  41. Zhang, H., Chen, N., Li, M., Mao, S.: The crack diffusion model: an innovative diffusion-based method for pavement crack detection. Remote Sensing 16(6), 986 (2024)

    Article  Google Scholar 

  42. Zhang, Q., Barri, K., Babanajad, S.K., Alavi, A.H.: Real-time detection of cracks on concrete bridge decks using deep learning in the frequency domain. Engineering 7(12), 1786–1796 (2021)

    Article  Google Scholar 

  43. Zheng, Y., Gao, Y., Lu, S., Mosalam, K.M.: Multistage semisupervised active learning framework for crack identification, segmentation, and measurement of bridges. Comput.-Aid. Civil Infrastruct. Eng. 37(9), 1089–1108 (2022)

    Article  Google Scholar 

  44. Zou, Q., Cao, Y., Li, Q., Mao, Q., Wang, S.: CrackTree: automatic crack detection from pavement images. Pattern Recogn. Lett. 33(3), 227–238 (2012)

    Article  Google Scholar 

  45. Zou, Q., Zhang, Z., Li, Q., Qi, X., Wang, Q., Wang, S.: DeepCrack: learning hierarchical convolutional features for crack detection. IEEE Trans. Image Process. 28(3), 1498–1512 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yubo Huang or Chenyang Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Y. et al. (2024). RD-Crack: A Study of Concrete Crack Detection Guided by a Residual Neural Network Improved Based on Diffusion Modeling. In: Wand, M., Malinovská, K., Schmidhuber, J., Tetko, I.V. (eds) Artificial Neural Networks and Machine Learning – ICANN 2024. ICANN 2024. Lecture Notes in Computer Science, vol 15024. Springer, Cham. https://doi.org/10.1007/978-3-031-72356-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72356-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72355-1

  • Online ISBN: 978-3-031-72356-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics