Abstract
Field-of-view (FOV) recovery of truncated chest CT scans is crucial for accurate body composition analysis, which involves quantifying skeletal muscle and subcutaneous adipose tissue (SAT) on CT slices. This, in turn, enables disease prognostication. Here, we present a method for recovering truncated CT slices using generative image outpainting. We train a diffusion model and apply it to truncated CT slices generated by simulating a small FOV. Our model reliably recovers the truncated anatomy and outperforms the previous state-of-the-art despite being trained on 87% less data. Our code is available at https://github.com/michelleespranita/ct_palette.
F. Fintelmann and P. Müller—Shared last authorship.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Framingham heart study. https://www.framinghamheartstudy.org/
Babic, A., et al.: Adipose tissue and skeletal muscle wasting precede clinical diagnosis of pancreatic cancer. Nat. Commun. 14(1), 4317 (2023)
Bridge, C.P., et al.: A fully automated deep learning pipeline for multi-vertebral level quantification and characterization of muscle and adipose tissue on chest CT scans. Radiol.: Artif. Intell. 4(1), e210080 (2022). https://doi.org/10.1148/ryai.210080
Chen, N., Zhang, Y., Zen, H., Weiss, R.J., Norouzi, M., Chan, W.: WaveGrad: estimating gradients for waveform generation (2020)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database, pp. 248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848
Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis (2021)
Éric Fournié, Baer-Beck, M., Stierstorfer, K.: CT field of view extension using combined channels extension and deep learning methods (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium (2018)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models (2020)
Huang, Y., Gao, L., Preuhs, A., Maier, A.: Field of view extension in computed tomography using deep learning prior. In: Tolxdorff, T., Deserno, T.M., Handels, H., Maier, A., Maier-Hein, K.H., Palm, C. (eds.) Bildverarbeitung für die Medizin 2020. Informatik aktuell, pp. 186–191. Springer, Wiesbaden (2020). https://doi.org/10.1007/978-3-658-29267-6_40
Kazerooni, E.A., et al.: ACR–STR practice parameter for the performance and reporting of lung cancer screening thoracic computed tomography (CT): 2014 (resolution 4)*. J. Thoracic Imaging 29(5) (2014). https://journals.lww.com/thoracicimaging/fulltext/2014/09000/acr_str_practice_parameter_for_the_performance_and.12.aspx
Ketola, J.H.J., Heino, H., Juntunen, M.A.K., Nieminen, M.T., Siltanen, S., Inkinen, S.I.: Generative adversarial networks improve interior computed tomography angiography reconstruction. Biomed. Phys. Eng. Express 7(6), 065041 (2021)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017)
Li, J., Wang, N., Zhang, L., Du, B., Tao, D.: Recurrent feature reasoning for image inpainting (2020)
Li, Z., et al.: Promising generative adversarial network based sinogram inpainting method for ultra-limited-angle computed tomography imaging. Sens. (Basel) 19(18), 3941 (2019)
Magudia, K., et al.: Population-scale CT-based body composition analysis of a large outpatient population using deep learning to derive age-, sex-, and race-specific reference curves. Radiology 298(2), 319–329 (2021)
Saharia, C., et al.: Palette: image-to-image diffusion models (2022)
Saharia, C., Ho, J., Chan, W., Salimans, T., Fleet, D.J., Norouzi, M.: Image super-resolution via iterative refinement (2021)
Sohl-Dickstein, J., Weiss, E.A., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics (2015)
Tang, Y., et al.: Body part regression with self-supervision. IEEE Trans. Med. Imaging 40(5), 1499–1507 (2021). https://doi.org/10.1109/TMI.2021.3058281
Troschel, A.S., et al.: Computed tomography-based body composition analysis and its role in lung cancer care. J. Thorac. Imaging 35(2), 91–100 (2020)
Xu, K., et al.: Body composition assessment with limited field-of-view computed tomography: a semantic image extension perspective (2023)
Acknowledgments
The Framingham Heart Study is supported by Contract No. HHSN268201500001I from the National Heart, Lung, and Blood Institute (NHLBI) with additional support from other sources. This work was supported by the FHS Core Contract (NHLBI award #75N92019D00031). This manuscript was not prepared in collaboration with investigators of the Framingham Heart Study and does not necessarily reflect the opinions or conclusions of the Framingham Heart Study or the NHLBI.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Liman, M.E., Rueckert, D., Fintelmann, F.J., Müller, P. (2024). Diffusion-Based Generative Image Outpainting for Recovery of FOV-Truncated CT Images. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15001. Springer, Cham. https://doi.org/10.1007/978-3-031-72378-0_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-72378-0_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72377-3
Online ISBN: 978-3-031-72378-0
eBook Packages: Computer ScienceComputer Science (R0)