Skip to main content

Diffusion-Based Generative Image Outpainting for Recovery of FOV-Truncated CT Images

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Field-of-view (FOV) recovery of truncated chest CT scans is crucial for accurate body composition analysis, which involves quantifying skeletal muscle and subcutaneous adipose tissue (SAT) on CT slices. This, in turn, enables disease prognostication. Here, we present a method for recovering truncated CT slices using generative image outpainting. We train a diffusion model and apply it to truncated CT slices generated by simulating a small FOV. Our model reliably recovers the truncated anatomy and outperforms the previous state-of-the-art despite being trained on 87% less data. Our code is available at https://github.com/michelleespranita/ct_palette.

F. Fintelmann and P. Müller—Shared last authorship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Framingham heart study. https://www.framinghamheartstudy.org/

  2. Vlsp. https://www.vumc.org/radiology/lung

  3. Babic, A., et al.: Adipose tissue and skeletal muscle wasting precede clinical diagnosis of pancreatic cancer. Nat. Commun. 14(1), 4317 (2023)

    Article  Google Scholar 

  4. Bridge, C.P., et al.: A fully automated deep learning pipeline for multi-vertebral level quantification and characterization of muscle and adipose tissue on chest CT scans. Radiol.: Artif. Intell. 4(1), e210080 (2022). https://doi.org/10.1148/ryai.210080

    Article  Google Scholar 

  5. Chen, N., Zhang, Y., Zen, H., Weiss, R.J., Norouzi, M., Chan, W.: WaveGrad: estimating gradients for waveform generation (2020)

    Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database, pp. 248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848

  7. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis (2021)

    Google Scholar 

  8. Éric Fournié, Baer-Beck, M., Stierstorfer, K.: CT field of view extension using combined channels extension and deep learning methods (2019)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)

    Google Scholar 

  10. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium (2018)

    Google Scholar 

  11. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models (2020)

    Google Scholar 

  12. Huang, Y., Gao, L., Preuhs, A., Maier, A.: Field of view extension in computed tomography using deep learning prior. In: Tolxdorff, T., Deserno, T.M., Handels, H., Maier, A., Maier-Hein, K.H., Palm, C. (eds.) Bildverarbeitung für die Medizin 2020. Informatik aktuell, pp. 186–191. Springer, Wiesbaden (2020). https://doi.org/10.1007/978-3-658-29267-6_40

    Chapter  Google Scholar 

  13. Kazerooni, E.A., et al.: ACR–STR practice parameter for the performance and reporting of lung cancer screening thoracic computed tomography (CT): 2014 (resolution 4)*. J. Thoracic Imaging 29(5) (2014). https://journals.lww.com/thoracicimaging/fulltext/2014/09000/acr_str_practice_parameter_for_the_performance_and.12.aspx

  14. Ketola, J.H.J., Heino, H., Juntunen, M.A.K., Nieminen, M.T., Siltanen, S., Inkinen, S.I.: Generative adversarial networks improve interior computed tomography angiography reconstruction. Biomed. Phys. Eng. Express 7(6), 065041 (2021)

    Article  Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017)

    Google Scholar 

  16. Li, J., Wang, N., Zhang, L., Du, B., Tao, D.: Recurrent feature reasoning for image inpainting (2020)

    Google Scholar 

  17. Li, Z., et al.: Promising generative adversarial network based sinogram inpainting method for ultra-limited-angle computed tomography imaging. Sens. (Basel) 19(18), 3941 (2019)

    Article  Google Scholar 

  18. Magudia, K., et al.: Population-scale CT-based body composition analysis of a large outpatient population using deep learning to derive age-, sex-, and race-specific reference curves. Radiology 298(2), 319–329 (2021)

    Article  Google Scholar 

  19. Saharia, C., et al.: Palette: image-to-image diffusion models (2022)

    Google Scholar 

  20. Saharia, C., Ho, J., Chan, W., Salimans, T., Fleet, D.J., Norouzi, M.: Image super-resolution via iterative refinement (2021)

    Google Scholar 

  21. Sohl-Dickstein, J., Weiss, E.A., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics (2015)

    Google Scholar 

  22. Tang, Y., et al.: Body part regression with self-supervision. IEEE Trans. Med. Imaging 40(5), 1499–1507 (2021). https://doi.org/10.1109/TMI.2021.3058281

    Article  Google Scholar 

  23. Troschel, A.S., et al.: Computed tomography-based body composition analysis and its role in lung cancer care. J. Thorac. Imaging 35(2), 91–100 (2020)

    Article  Google Scholar 

  24. Xu, K., et al.: Body composition assessment with limited field-of-view computed tomography: a semantic image extension perspective (2023)

    Google Scholar 

Download references

Acknowledgments

The Framingham Heart Study is supported by Contract No. HHSN268201500001I from the National Heart, Lung, and Blood Institute (NHLBI) with additional support from other sources. This work was supported by the FHS Core Contract (NHLBI award #75N92019D00031). This manuscript was not prepared in collaboration with investigators of the Framingham Heart Study and does not necessarily reflect the opinions or conclusions of the Framingham Heart Study or the NHLBI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Müller .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 92 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liman, M.E., Rueckert, D., Fintelmann, F.J., Müller, P. (2024). Diffusion-Based Generative Image Outpainting for Recovery of FOV-Truncated CT Images. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15001. Springer, Cham. https://doi.org/10.1007/978-3-031-72378-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72378-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72377-3

  • Online ISBN: 978-3-031-72378-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics