Abstract
Identification of microvascular obstruction (MVO) in acute myocardial infarction patients is critical for prognosis and has a direct link to mortality risk. Current approaches using late gadolinium enhancement (LGE) for contrast-enhanced cardiovascular magnetic resonance (CMR) pose risks to the kidney and may not be applicable to many patients. This highlights the need to explore alternative non-contrast imaging methods, such as cine CMR, for MVO identification. However, the scarcity of datasets and the challenges in annotation make the MVO identification in cine CMR challenging and remain largely under-explored. For this purpose, we propose a non-contrast MVO identification framework in cine CMR with a novel coarse-grained mask regularization strategy to effectively utilize information from LGE annotations in training. We train and validate our model on a dataset comprising 680 cases. Our model demonstrates superior performance over competing methods in cine CMR-based MVO identification, proving its feasibility and presenting a novel and patient-friendly approach to the field. The code is available at https://github.com/code-koukai/MVO-identification.
Y. Yan—The work was done during an internship at \(\text {I}^2\text {R}\), A*STAR.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amyar, A., et al.: Gadolinium-free cardiac mri myocardial scar detection by 4d convolution factorization. In: MICCAI, pp. 639–648. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-43895-0_60
Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: Vivit: a video vision transformer. In: ICCV, pp. 6836–6846 (2021)
Barnes, M., Heywood, A.E., Mahimbo, A., Rahman, B., Newall, A.T., Macintyre, C.R.: Acute myocardial infarction and influenza: a meta-analysis of case-control studies. Heart 101(21), 1738–1747 (2015)
Beetz, M., Banerjee, A., Grau, V.: Multi-objective point cloud autoencoders for explainable myocardial infarction prediction. In: ICCV, pp. 532–542 (2023)
Bertasius, G., Wang, H., Torresani, L.: Is space-time attention all you need for video understanding? In: ICML, vol. 2, p. 4 (2021)
Brahim, K., Qayyum, A., Lalande, A., Boucher, A., Sakly, A., Meriaudeau, F.: A 3d deep learning approach based on shape prior for automatic segmentation of myocardial diseases. In: IPTA. pp. 1–6 (2020)
Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: CVPR, pp. 6299–6308 (2017)
De Waha, S., et al.: Relationship between microvascular obstruction and adverse events following primary percutaneous coronary intervention for st-segment elevation myocardial infarction: an individual patient data pooled analysis from seven randomized trials. Eur. Heart J. 38(47), 3502–3510 (2017)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: NAACL, pp. 4171–4186 (2019)
Dong, S., et al.: Deu-net 2.0: enhanced deformable u-net for 3d cardiac cine mri segmentation. Med. Image Anal. 78, 102389 (2022)
Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition. In: ICCV, pp. 6202–6211 (2019)
Gonzales, R.A., Lamy, J., Seemann, F., Heiberg, E., Onofrey, J.A., Peters, D.C.: TVnet: automated time-resolved tracking of the tricuspid valve plane in MRI long-axis cine images with a dual-stage deep learning pipeline. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 567–576. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_55
Kalfaoglu, M.E., Kalkan, S., Alatan, A.A.: Late temporal modeling in 3d cnn architectures with bert for action recognition. In: ECCV 2020 Workshops, pp. 731–747 (2020)
Kim, R.J., et al.: The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N. Engl. J. Med. 343(20), 1445–1453 (2000)
de La Rosa, E., Sidibé, D., Decourselle, T., Leclercq, T., Cochet, A., Lalande, A.: Myocardial infarction quantification from late gadolinium enhancement mri using top-hat transforms and neural networks. Algorithms 14(8), 249 (2021)
Leiner, T.: Deep learning for detection of myocardial scar tissue: goodbye to gadolinium? Radiology 291(3), 618–619 (2019)
Li, L., et al.: Myops: a benchmark of myocardial pathology segmentation combining three-sequence cardiac magnetic resonance images. Med. Image Anal. 87, 102808 (2023)
Lyu, J., et al.: Region-focused multi-view transformer-based generative adversarial network for cardiac cine mri reconstruction. Med. Image Anal. 85, 102760 (2023)
Meng, Q., Bai, W., Liu, T., O’Regan, D.P., Rueckert, D.: Mesh-based 3d motion tracking in cardiac mri using deep learning. In: MICCAI, pp. 248–258. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-16446-0_24
Oksuz, I., et al.: Deep learning-based detection and correction of cardiac mr motion artefacts during reconstruction for high-quality segmentation. TMI 39(12), 4001–4010 (2020)
Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3d residual networks. In: ICCV, pp. 5533–5541 (2017)
Reimer, K.A., Lowe, J.E., Rasmussen, M.M., Jennings, R.B.: The wavefront phenomenon of ischemic cell death. 1. myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 56(5), 786–794 (1977)
Shroff, G.R., Frederick, P.D., Herzog, C.A.: Renal failure and acute myocardial infarction: clinical characteristics in patients with advanced chronic kidney disease, on dialysis, and without chronic kidney disease. Am. Heart J. 163(3), 399–406 (2012)
Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3d convolutional networks. In: ICCV, pp. 4489–4497 (2015)
Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6450–6459 (2018)
Tripathi, P.C., et al.: Tensor-based multimodal learning for prediction of pulmonary arterial wedge pressure from cardiac mri. In: MICCAI 2023, pp. 206–215. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-43990-2_20
Vimalesvaran, K., et al.: Detecting aortic valve pathology from the 3-chamber cine cardiac mri view. In: MICCAI, pp. 571–580. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-16431-6_54
Wang, K.N., et al.: Awsnet: an auto-weighted supervision attention network for myocardial scar and edema segmentation in multi-sequence cardiac magnetic resonance images. Med. Image Anal. 77, 102362 (2022)
Xu, C., Xu, L., Ohorodnyk, P., Roth, M., Chen, B., Li, S.: Contrast agent-free synthesis and segmentation of ischemic heart disease images using progressive sequential causal gans. Med. Image Anal. 62, 101668 (2020)
Yan, C., et al.: Motion-corrected free-breathing late gadolinium enhancement combined with a gadolinium contrast agent with a high relaxation rate: an optimized cardiovascular magnetic resonance examination protocol. J. Int. Med. Res. 48(10), 0300060520964664 (2020)
Zhang, N., et al.: Deep learning for diagnosis of chronic myocardial infarction on nonenhanced cardiac cine mri. Radiology 291(3), 606–617 (2019)
Acknowledgments
This work is supported by the Agency for Science, Technology and Research under its AI\(^3\) Horizontal Technology Coordinating Office Grant C231118001.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yan, Y. et al. (2024). Coarse-Grained Mask Regularization for Microvascular Obstruction Identification from Non-contrast Cardiac Magnetic Resonance. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15001. Springer, Cham. https://doi.org/10.1007/978-3-031-72378-0_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-72378-0_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72377-3
Online ISBN: 978-3-031-72378-0
eBook Packages: Computer ScienceComputer Science (R0)