Skip to main content

Coarse-Grained Mask Regularization for Microvascular Obstruction Identification from Non-contrast Cardiac Magnetic Resonance

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Identification of microvascular obstruction (MVO) in acute myocardial infarction patients is critical for prognosis and has a direct link to mortality risk. Current approaches using late gadolinium enhancement (LGE) for contrast-enhanced cardiovascular magnetic resonance (CMR) pose risks to the kidney and may not be applicable to many patients. This highlights the need to explore alternative non-contrast imaging methods, such as cine CMR, for MVO identification. However, the scarcity of datasets and the challenges in annotation make the MVO identification in cine CMR challenging and remain largely under-explored. For this purpose, we propose a non-contrast MVO identification framework in cine CMR with a novel coarse-grained mask regularization strategy to effectively utilize information from LGE annotations in training. We train and validate our model on a dataset comprising 680 cases. Our model demonstrates superior performance over competing methods in cine CMR-based MVO identification, proving its feasibility and presenting a novel and patient-friendly approach to the field. The code is available at https://github.com/code-koukai/MVO-identification.

Y. Yan—The work was done during an internship at \(\text {I}^2\text {R}\), A*STAR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amyar, A., et al.: Gadolinium-free cardiac mri myocardial scar detection by 4d convolution factorization. In: MICCAI, pp. 639–648. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-43895-0_60

  2. Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: Vivit: a video vision transformer. In: ICCV, pp. 6836–6846 (2021)

    Google Scholar 

  3. Barnes, M., Heywood, A.E., Mahimbo, A., Rahman, B., Newall, A.T., Macintyre, C.R.: Acute myocardial infarction and influenza: a meta-analysis of case-control studies. Heart 101(21), 1738–1747 (2015)

    Article  Google Scholar 

  4. Beetz, M., Banerjee, A., Grau, V.: Multi-objective point cloud autoencoders for explainable myocardial infarction prediction. In: ICCV, pp. 532–542 (2023)

    Google Scholar 

  5. Bertasius, G., Wang, H., Torresani, L.: Is space-time attention all you need for video understanding? In: ICML, vol. 2, p. 4 (2021)

    Google Scholar 

  6. Brahim, K., Qayyum, A., Lalande, A., Boucher, A., Sakly, A., Meriaudeau, F.: A 3d deep learning approach based on shape prior for automatic segmentation of myocardial diseases. In: IPTA. pp. 1–6 (2020)

    Google Scholar 

  7. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: CVPR, pp. 6299–6308 (2017)

    Google Scholar 

  8. De Waha, S., et al.: Relationship between microvascular obstruction and adverse events following primary percutaneous coronary intervention for st-segment elevation myocardial infarction: an individual patient data pooled analysis from seven randomized trials. Eur. Heart J. 38(47), 3502–3510 (2017)

    Article  Google Scholar 

  9. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: NAACL, pp. 4171–4186 (2019)

    Google Scholar 

  10. Dong, S., et al.: Deu-net 2.0: enhanced deformable u-net for 3d cardiac cine mri segmentation. Med. Image Anal. 78, 102389 (2022)

    Google Scholar 

  11. Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition. In: ICCV, pp. 6202–6211 (2019)

    Google Scholar 

  12. Gonzales, R.A., Lamy, J., Seemann, F., Heiberg, E., Onofrey, J.A., Peters, D.C.: TVnet: automated time-resolved tracking of the tricuspid valve plane in MRI long-axis cine images with a dual-stage deep learning pipeline. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 567–576. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_55

    Chapter  Google Scholar 

  13. Kalfaoglu, M.E., Kalkan, S., Alatan, A.A.: Late temporal modeling in 3d cnn architectures with bert for action recognition. In: ECCV 2020 Workshops, pp. 731–747 (2020)

    Google Scholar 

  14. Kim, R.J., et al.: The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N. Engl. J. Med. 343(20), 1445–1453 (2000)

    Article  Google Scholar 

  15. de La Rosa, E., Sidibé, D., Decourselle, T., Leclercq, T., Cochet, A., Lalande, A.: Myocardial infarction quantification from late gadolinium enhancement mri using top-hat transforms and neural networks. Algorithms 14(8), 249 (2021)

    Article  Google Scholar 

  16. Leiner, T.: Deep learning for detection of myocardial scar tissue: goodbye to gadolinium? Radiology 291(3), 618–619 (2019)

    Article  Google Scholar 

  17. Li, L., et al.: Myops: a benchmark of myocardial pathology segmentation combining three-sequence cardiac magnetic resonance images. Med. Image Anal. 87, 102808 (2023)

    Article  Google Scholar 

  18. Lyu, J., et al.: Region-focused multi-view transformer-based generative adversarial network for cardiac cine mri reconstruction. Med. Image Anal. 85, 102760 (2023)

    Article  Google Scholar 

  19. Meng, Q., Bai, W., Liu, T., O’Regan, D.P., Rueckert, D.: Mesh-based 3d motion tracking in cardiac mri using deep learning. In: MICCAI, pp. 248–258. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-16446-0_24

  20. Oksuz, I., et al.: Deep learning-based detection and correction of cardiac mr motion artefacts during reconstruction for high-quality segmentation. TMI 39(12), 4001–4010 (2020)

    Google Scholar 

  21. Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3d residual networks. In: ICCV, pp. 5533–5541 (2017)

    Google Scholar 

  22. Reimer, K.A., Lowe, J.E., Rasmussen, M.M., Jennings, R.B.: The wavefront phenomenon of ischemic cell death. 1. myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 56(5), 786–794 (1977)

    Google Scholar 

  23. Shroff, G.R., Frederick, P.D., Herzog, C.A.: Renal failure and acute myocardial infarction: clinical characteristics in patients with advanced chronic kidney disease, on dialysis, and without chronic kidney disease. Am. Heart J. 163(3), 399–406 (2012)

    Article  Google Scholar 

  24. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3d convolutional networks. In: ICCV, pp. 4489–4497 (2015)

    Google Scholar 

  25. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6450–6459 (2018)

    Google Scholar 

  26. Tripathi, P.C., et al.: Tensor-based multimodal learning for prediction of pulmonary arterial wedge pressure from cardiac mri. In: MICCAI 2023, pp. 206–215. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-43990-2_20

  27. Vimalesvaran, K., et al.: Detecting aortic valve pathology from the 3-chamber cine cardiac mri view. In: MICCAI, pp. 571–580. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-16431-6_54

  28. Wang, K.N., et al.: Awsnet: an auto-weighted supervision attention network for myocardial scar and edema segmentation in multi-sequence cardiac magnetic resonance images. Med. Image Anal. 77, 102362 (2022)

    Article  Google Scholar 

  29. Xu, C., Xu, L., Ohorodnyk, P., Roth, M., Chen, B., Li, S.: Contrast agent-free synthesis and segmentation of ischemic heart disease images using progressive sequential causal gans. Med. Image Anal. 62, 101668 (2020)

    Article  Google Scholar 

  30. Yan, C., et al.: Motion-corrected free-breathing late gadolinium enhancement combined with a gadolinium contrast agent with a high relaxation rate: an optimized cardiovascular magnetic resonance examination protocol. J. Int. Med. Res. 48(10), 0300060520964664 (2020)

    Article  Google Scholar 

  31. Zhang, N., et al.: Deep learning for diagnosis of chronic myocardial infarction on nonenhanced cardiac cine mri. Radiology 291(3), 606–617 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Agency for Science, Technology and Research under its AI\(^3\) Horizontal Technology Coordinating Office Grant C231118001.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Cheng or Jagath C. Rajapakse .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 11046 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yan, Y. et al. (2024). Coarse-Grained Mask Regularization for Microvascular Obstruction Identification from Non-contrast Cardiac Magnetic Resonance. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15001. Springer, Cham. https://doi.org/10.1007/978-3-031-72378-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72378-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72377-3

  • Online ISBN: 978-3-031-72378-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics