Skip to main content

Reliable Multi-view Learning with Conformal Prediction for Aortic Stenosis Classification in Echocardiography

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15001))

  • 2497 Accesses

Abstract

The fundamental problem with ultrasound-guided diagnosis is that the acquired images are often 2-D cross-sections of a 3-D anatomy, potentially missing important anatomical details. This limitation leads to challenges in ultrasound echocardiography, such as poor visualization of heart valves or foreshortening of ventricles. Clinicians must interpret these images with inherent uncertainty, a nuance absent in machine learning’s one-hot labels. We propose Re-Training for Uncertainty (RT4U), a data-centric method to introduce uncertainty to weakly informative inputs in the training set. This simple approach can be incorporated to existing state-of-the-art aortic stenosis classification methods to further improve their accuracy. When combined with conformal prediction techniques, RT4U can yield adaptively sized prediction sets which are guaranteed to contain the ground truth class to a high accuracy. We validate the effectiveness of RT4U on three diverse datasets: a public (TMED-2) and a private AS dataset, along with a CIFAR-10-derived toy dataset. Results show improvement on all the datasets. Our source code is publicly available at: https://github.com/an-michaelg/RT4U.

T. Tsang and P. Abolmaesumi are joint senior authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abe, Y.: Screening for aortic stenosis using physical examination and echocardiography. J. Echocardiogr. 19(2), 80–85 (2021)

    Article  Google Scholar 

  2. Ahmadi, N., Tsang, M., Gu, A., Tsang, T., Abolmaesumi, P.: Transformer-based spatio-temporal analysis for classification of aortic stenosis severity from echocardiography cine series. IEEE Trans. Med. Imaging 43(1), 366–376 (2024)

    Article  Google Scholar 

  3. Algan, G., Ulusoy, I.: Image classification with deep learning in the presence of noisy labels: a survey. Knowl.-Based Syst. 215, 106771 (2021)

    Article  Google Scholar 

  4. Ancona, R., Pinto, S.C.: Epidemiology of aortic valve stenosis (AS) and of aortic valve incompetence (AI): is the prevalence of AS/AI similar in different parts of the world. Eur. Soc. Cardiol. 18(10) (2020)

    Google Scholar 

  5. Angelopoulos, A., Bates, S., Malik, J., Jordan, M.I.: Uncertainty sets for image classifiers using conformal prediction (2022)

    Google Scholar 

  6. Angelopoulos, A.N., Bates, S.: A gentle introduction to conformal prediction and distribution-free uncertainty quantification. CoRR abs/2107.07511 (2021)

    Google Scholar 

  7. Bonow, R.O., Carabello, B.A., Chatterjee, K., et al.: ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American college of cardiology/American heart association task force on practice guidelines. J. Am. Coll. Cardiol. 48(3), e1–e148 (2006)

    Article  Google Scholar 

  8. Chamsi-Pasha, M.A., Sengupta, P.P., Zoghbi, W.A.: Handheld echocardiography: current state and future perspectives. Circulation 136(22), 2178–2188 (2017)

    Article  Google Scholar 

  9. Chen, P., Ye, J., Chen, G., Zhao, J., Heng, P.A.: Beyond class-conditional assumption: a primary attempt to combat instance-dependent label noise. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 11442–11450 (2021)

    Google Scholar 

  10. Dai, W., Nazzari, H., Namasivayam, M., Hung, J., Stultz, C.M.: Identifying aortic stenosis with a single parasternal long-axis video using deep learning. J. Am. Soc. Echocardiogr. 36(1), 116–118 (2023)

    Article  Google Scholar 

  11. Ginsberg, T., et al.: Deep video networks for automatic assessment of aortic stenosis in echocardiography. In: Noble, J.A., Aylward, S., Grimwood, A., Min, Z., Lee, S.-L., Hu, Y. (eds.) ASMUS 2021. LNCS, vol. 12967, pp. 202–210. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87583-1_20

    Chapter  Google Scholar 

  12. Gulič, T.G., Makuc, J., Prosen, G., Dinevski, D.: Pocket-size imaging device as a screening tool for aortic stenosis. Wien. Klin. Wochenschr. 128, 348–353 (2016)

    Article  Google Scholar 

  13. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: International Conference on Machine Learning, pp. 1321–1330. PMLR (2017)

    Google Scholar 

  14. Guo, X.: Predicting aortic stenosis severity using deep learning. Ph.D. thesis, Massachusetts Institute of Technology (2021)

    Google Scholar 

  15. Holste, G., Oikonomou, E.K., Mortazavi, B.J., Coppi, A., et al.: Severe aortic stenosis detection by deep learning applied to echocardiography. Eur. Heart J. 44(43), 4592–4604 (2023)

    Article  Google Scholar 

  16. Huang, Z., Long, G., Wessler, B., Hughes, M.C.: A new semi-supervised learning benchmark for classifying view and diagnosing aortic stenosis from echocardiograms. In: Machine Learning for Healthcare Conference, pp. 614–647. PMLR (2021)

    Google Scholar 

  17. Lu, C., Angelopoulos, A.N., Pomerantz, S.: Improving trustworthiness of AI disease severity rating in medical imaging with ordinal conformal prediction sets. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13438, pp. 545–554. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_52

    Chapter  Google Scholar 

  18. Lu, C., Lemay, A., Chang, K., Höbel, K., Kalpathy-Cramer, J.: Fair conformal predictors for applications in medical imaging. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 12008–12016 (2022)

    Google Scholar 

  19. Nemchyna, O., Soltani, S., Solowjowa, N., Schoenrath, F., et al.: Validity of visual assessment of aortic valve morphology in patients with aortic stenosis using two-dimensional echocardiography. Int. J. Cardiovasc. Imaging 37, 813–823 (2021)

    Article  Google Scholar 

  20. Romano, Y., Sesia, M., Candes, E.: Classification with valid and adaptive coverage. In: Advances in Neural Information Processing Systems, vol. 33, pp. 3581–3591. Curran Associates, Inc. (2020)

    Google Scholar 

  21. Sadinle, M., Lei, J., Wasserman, L.: Least ambiguous set-valued classifiers with bounded error levels. J. Am. Stat. Assoc. 114(525), 223–234 (2019)

    Article  MathSciNet  Google Scholar 

  22. Satopää, V.A., Baron, J., Foster, D.P., Mellers, B.A., Tetlock, P.E., Ungar, L.H.: Combining multiple probability predictions using a simple logit model. Int. J. Forecast. 30(2), 344–356 (2014)

    Article  Google Scholar 

  23. Strange, G., et al.: Poor long-term survival in patients with moderate aortic stenosis. J. Am. Coll. Cardiol. 74(15), 1851–1863 (2019)

    Article  Google Scholar 

  24. Stutz, D., Roy, A.G., Matejovicova, T., et al.: Conformal prediction under ambiguous ground truth. arXiv preprint arXiv:2307.09302 (2023)

  25. Vaseli, H., Gu, A.N., Ahmadi Amiri, S.N., et al.: ProtoASNet: dynamic prototypes for inherently interpretable and uncertainty-aware aortic stenosis classification in echocardiography. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14225, pp. 368–378. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43987-2_36

    Chapter  Google Scholar 

  26. Vovk, V.: Conditional validity of inductive conformal predictors. In: Asian Conference on Machine Learning, pp. 475–490. PMLR (2012)

    Google Scholar 

  27. Vovk, V., Gammerman, A., Shafer, G.: Algorithmic Learning in a Random World, vol. 29. Springer, New York (2005). https://doi.org/10.1007/b106715

    Book  Google Scholar 

  28. Wessler, B.S., Huang, Z., Long, G.M., Jr., Pacifici, S., et al.: Automated detection of aortic stenosis using machine learning. J. Am. Soc. Echocardiogr. 36(4), 411–420 (2023)

    Article  Google Scholar 

  29. Wieslander, H., Harrison, P.J., Skogberg, G., Jackson, S., et al.: Deep learning with conformal prediction for hierarchical analysis of large-scale whole-slide tissue images. IEEE J. Biomed. Health Inform. 25(2), 371–380 (2020)

    Article  Google Scholar 

  30. Ye, X., Li, X., Liu, T., Sun, Y., et al.: Active negative loss functions for learning with noisy labels. In: Advances in Neural Information Processing Systems, vol. 36 (2024)

    Google Scholar 

  31. Zhang, Y., Wang, S., Zhang, Y., Chen, D.Z.: RR-CP: reliable-region-based conformal prediction for trustworthy medical image classification. In: Sudre, C.H., Baumgartner, C.F., Dalca, A., Mehta, R., Qin, C., Wells, W.M. (eds.) UNSURE 2023. LNCS, vol. 14291, pp. 12–21. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-44336-7_2

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the UBC Advanced Research Computing Center (ARC), the Canadian Institutes of Health Research (CIHR), and the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ang Nan Gu .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2892 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gu, A.N., Tsang, M., Vaseli, H., Tsang, T., Abolmaesumi, P. (2024). Reliable Multi-view Learning with Conformal Prediction for Aortic Stenosis Classification in Echocardiography. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15001. Springer, Cham. https://doi.org/10.1007/978-3-031-72378-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72378-0_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72377-3

  • Online ISBN: 978-3-031-72378-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics