Skip to main content

Whole Heart 3D+T Representation Learning Through Sparse 2D Cardiac MR Images

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Cardiac Magnetic Resonance (CMR) imaging serves as the gold-standard for evaluating cardiac morphology and function. Typically, a multi-view CMR stack, covering short-axis (SA) and 2/3/4-chamber long-axis (LA) views, is acquired for a thorough cardiac assessment. However, efficiently streamlining the complex, high-dimensional 3D+T CMR data and distilling compact, coherent representation remains a challenge. In this work, we introduce a whole-heart self-supervised learning framework that utilizes masked imaging modeling to automatically uncover the correlations between spatial and temporal patches throughout the cardiac stacks. This process facilitates the generation of meaningful and well-clustered heart representations without relying on the traditionally required, and often costly, labeled data. The learned heart representation can be directly used for various downstream tasks. Furthermore, our method demonstrates remarkable robustness, ensuring consistent representations even when certain CMR planes are missing/flawed. We train our model on 14,000 unlabeled CMR data from UK BioBank and evaluate it on 1,000 annotated data. The proposed method demonstrates superior performance to baselines in tasks that demand comprehensive 3D+T cardiac information, e.g. cardiac phenotype (ejection fraction and ventricle volume) prediction and multi-plane/multi-frame CMR segmentation, highlighting its effectiveness in extracting comprehensive cardiac features that are both anatomically and pathologically relevant. The code is available at https://github.com/Yundi-Zhang/WholeHeartRL.git.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bai, W., Suzuki, H., Huang, J., Francis, C., et al.: A population-based phenome-wide association study of cardiac and aortic structure and function. Nat. Med. 26(10), 1654–1662 (2020)

    Article  Google Scholar 

  2. Biffi, C., et al.: Learning interpretable anatomical features through deep generative models: application to cardiac remodeling. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 464–471. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_52

    Chapter  Google Scholar 

  3. Campello, V.M., Gkontra, P., Izquierdo, C., Martin-Isla, C., et al.: Multi-centre, multi-vendor and multi-disease cardiac segmentation: the M &MS challenge. IEEE Trans. Med. Imaging 40(12), 3543–3554 (2021)

    Article  Google Scholar 

  4. Chartsias, A., et al.: Factorised spatial representation learning: application in semi-supervised myocardial segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 490–498. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_55

    Chapter  Google Scholar 

  5. Chen, C., Biffi, C., Tarroni, G., Petersen, S., Bai, W., Rueckert, D.: Learning shape priors for robust cardiac MR segmentation from multi-view images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 523–531. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_58

    Chapter  Google Scholar 

  6. Chen, C., Qin, C., Qiu, H., Tarroni, G., et al.: Deep learning for cardiac image segmentation: a review. Front. Cardiovasc. Med. 7, 25 (2020)

    Article  Google Scholar 

  7. Chen, X., He, K.: Exploring simple siamese representation learning. In: CVPR, pp. 15750–15758 (2021)

    Google Scholar 

  8. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  9. Grill, J.B., Strub, F., Altché, F., Tallec, C., et al.: Bootstrap your own latent-a new approach to self-supervised learning. In: NeurIPS, vol. 33, pp. 21271–21284 (2020)

    Google Scholar 

  10. Hatamizadeh, A., Tang, Y., Nath, V., Yang, D., et al.: UNETR: transformers for 3D medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 574–584 (2022)

    Google Scholar 

  11. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: CVPR, pp. 16000–16009 (2022)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  13. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  14. Khened, M., Kollerathu, V.A., Krishnamurthi, G.: Fully convolutional multi-scale residual densenets for cardiac segmentation and automated cardiac diagnosis using ensemble of classifiers. Med. Image Anal. 51, 21–45 (2019)

    Article  Google Scholar 

  15. von Knobelsdorff-Brenkenhoff, F., Pilz, G., Schulz-Menger, J.: Representation of cardiovascular magnetic resonance in the AHA/ACC guidelines. J. Cardiovasc. Magn. Reson. 19(1), 1–21 (2017)

    Google Scholar 

  16. Luo, G., Sun, G., Wang, K., Dong, S., Zhang, H.: A novel left ventricular volumes prediction method based on deep learning network in cardiac MRI. In: Computing in Cardiology Conference, pp. 89–92 (2016)

    Google Scholar 

  17. Meng, Q., Qin, C., Bai, W., Liu, T., et al.: Mulvimotion: shape-aware 3D myocardial motion tracking from multi-view cardiac MRI. IEEE TMI 41(8), 1961–1974 (2022)

    Google Scholar 

  18. Pan, J., Huang, W., Rueckert, D., Küstner, T., Hammernik, K.: Reconstruction-driven motion estimation for motion-compensated MR cine imaging. IEEE TMI (2024)

    Google Scholar 

  19. Pan, J., Rueckert, D., Küstner, T., Hammernik, K.: Efficient image registration network for non-rigid cardiac motion estimation. In: Haq, N., Johnson, P., Maier, A., Würfl, T., Yoo, J. (eds.) MLMIR 2021. LNCS, vol. 12964, pp. 14–24. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88552-6_2

    Chapter  Google Scholar 

  20. Pan, J., Shit, S., Turgut, Ö., Huang, W., et al.: Global k-space interpolation for dynamic MRI reconstruction using masked image modeling. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14229, pp. 228–238. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43999-5_22

    Chapter  Google Scholar 

  21. Petersen, S.E., Matthews, P.M., Francis, J.M., Robson, M.D., et al.: UK Biobank’s cardiovascular magnetic resonance protocol. JCMR 1–7 (2015)

    Google Scholar 

  22. Qin, C., et al.: Joint learning of motion estimation and segmentation for cardiac MR image sequences. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 472–480. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_53

    Chapter  Google Scholar 

  23. Qiu, J., Huang, P., Nakashima, M., Lee, J., et al.: Multimodal representation learning of cardiovascular magnetic resonance imaging. arXiv preprint arXiv:2304.07675 (2023)

  24. Radhakrishnan, A., Friedman, S.F., Khurshid, S., Ng, K., et al.: Cross-modal autoencoder framework learns holistic representations of cardiovascular state. Nat. Commun. 14(1), 2436 (2023)

    Article  Google Scholar 

  25. Schlemper, J., et al.: Cardiac MR segmentation from undersampled k-space using deep latent representation learning. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 259–267. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_30

    Chapter  Google Scholar 

  26. Stolt-Ansó, N., McGinnis, J., Pan, J., Hammernik, K., Rueckert, D.: NISF: neural implicit segmentation functions. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14223, pp. 734–744. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43901-8_70

    Chapter  Google Scholar 

  27. Sun, X., Liu, Z., Zheng, S., Lin, C., et al.: Attention-enhanced disentangled representation learning for unsupervised domain adaptation in cardiac segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13437, pp. 745–754. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16449-1_71

    Chapter  Google Scholar 

  28. Turgut, Ö., Müller, P., Hager, P., Shit, S., et al.: Unlocking the diagnostic potential of ECG through knowledge transfer from cardiac MRI. arXiv preprint arXiv:2308.05764 (2023)

  29. Wang, H., Amini, A.A.: Cardiac motion and deformation recovery from MRI: a review. IEEE TMI 31(2), 487–503 (2011)

    Google Scholar 

  30. Wang, S., et al.: Joint motion correction and super resolution for cardiac segmentation via latent optimisation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 14–24. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_2

    Chapter  Google Scholar 

  31. Xue, W., Islam, A., Bhaduri, M., Li, S.: Direct multitype cardiac indices estimation via joint representation and regression learning. IEEE TMI 36(10), 2057–2067 (2017)

    Google Scholar 

  32. Zhang, Q., Wang, Y., Wang, Y.: How mask matters: towards theoretical understandings of masked autoencoders. In: NeurIPS, vol. 35, pp. 27127–27139 (2022)

    Google Scholar 

  33. Zhang, Y., Stolt-Ansó, N., Pan, J., Huang, W., Hammernik, K., Rueckert, D.: Direct cardiac segmentation from undersampled k-space using transformers. arXiv preprint arXiv:2406.00192 (2024)

  34. Zhen, X., Wang, Z., Islam, A., Bhaduri, M., et al.: Multi-scale deep networks and regression forests for direct bi-ventricular volume estimation. Med. Image Anal. 30, 120–129 (2016)

    Article  Google Scholar 

  35. Zhou, L., Liu, H., Bae, J., He, J., et al.: Self pre-training with masked autoencoders for medical image classification and segmentation. In: IEEE ISBI, pp. 1–6 (2023)

    Google Scholar 

Download references

Acknowledgments

This research has been conducted using the UK Biobank Resource under Application Number 87802. This work is funded by the European Research Council (ERC) project Deep4MI (884622).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yundi Zhang .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 229 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Chen, C., Shit, S., Starck, S., Rueckert, D., Pan, J. (2024). Whole Heart 3D+T Representation Learning Through Sparse 2D Cardiac MR Images. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15001. Springer, Cham. https://doi.org/10.1007/978-3-031-72378-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72378-0_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72377-3

  • Online ISBN: 978-3-031-72378-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics