Abstract
Chest radiography is a commonly used diagnostic imaging exam for monitoring disease severity. Machine learning has made significant strides in static tasks (e.g., segmentation or diagnosis) based on a single medical image. However, disease progression monitoring based on longitudinal images remains fairly underexplored, which provides informative clues for early prognosis and timely intervention. In practice, the development of underlying disease typically accompanies with the occurrence and changes of multiple specific symptoms. Inspired by this, we propose a multi-stage framework to model the complex progression from symptom perspective. Specifically, we introduce two consecutive modules namely Symptom Disentangler (SD) and Symptom Progression Learner (SPL) to learn from static diagnosis to dynamic disease development. By explicitly extracting the symptom-specific features from a pair of chest radiographs using a set of learnable symptom-aware embeddings in SD module, the SPL module can leverage these features to obtain the symptom progression features, which will be utilized for the final progression prediction. Experimental results on the public dataset Chest ImaGenome show superior performance compared to current state-of-the-art method. Code is available at: https://github.com/zhuye98/SDPL.git.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ait Nasser, A., Akhloufi, M.A.: A review of recent advances in deep learning models for chest disease detection using radiography. Diagnostics 13(1), 159 (2023)
Bannur, S., et al.: Learning to exploit temporal structure for biomedical vision-language processing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15016–15027 (2023)
Çallı, E., Sogancioglu, E., van Ginneken, B., van Leeuwen, K.G., Murphy, K.: Deep learning for chest x-ray analysis: a survey. Med. Image Anal. 72, 102125 (2021)
Dalla Serra, F., Wang, C., Deligianni, F., Dalton, J., O’Neil, A.Q.: Controllable chest X-ray report generation from longitudinal representations. In: The 2023 Conference on Empirical Methods in Natural Language Processing (2023)
Emre, T., Chakravarty, A., Rivail, A., Riedl, S., Schmidt-Erfurth, U., Bogunović, H.: TINC: temporally informed non-contrastive learning for disease progression modeling in retinal OCT volumes. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13432, pp. 625–634. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16434-7_60
Hou, B., Kaissis, G., Summers, R.M., Kainz, B.: RATCHET: medical transformer for chest X-ray diagnosis and reporting. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12907, pp. 293–303. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_28
Huang, C., et al.: DADP: dynamic abnormality detection and progression for longitudinal knee magnetic resonance images from the osteoarthritis initiative. Med. Image Anal. 77, 102343 (2022)
Irvin, J., et al.: CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison. In: Thirty-Third AAAI Conference on Artificial Intelligence (2019)
Johnson, A.E., et al.: MIMIC-CXR-JPG, a large publicly available database of labeled chest radiographs. arXiv preprint arXiv:1901.07042 (2019)
Karwande, G., Mbakwe, A.B., Wu, J.T., Celi, L.A., Moradi, M., Lourentzou, I.: CheXRelNet: an anatomy-aware model for tracking longitudinal relationships between chest X-rays. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13431, pp. 581–591. Springer, Cham (2022)
Li, M.D., et al.: Siamese neural networks for continuous disease severity evaluation and change detection in medical imaging. NPJ Digit. Med. 3(1), 48 (2020)
Liang, W., et al.: Modeling Alzheimers’ disease progression from multi-task and self-supervised learning perspective with brain networks. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14220, pp. 310–319. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43907-0_30
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)
Luo, Y., Shi, M., Tian, Y., Elze, T., Wang, M.: Harvard glaucoma detection and progression: a multimodal multitask dataset and generalization-reinforced semi-supervised learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 20471–20482 (2023)
Mbakwe, A.B., Wang, L., Moradi, M., Lourentzou, I.: Hierarchical vision transformers for disease progression detection in chest X-ray images. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14224, pp. 685–695. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43904-9_66
Müller, P., Meissen, F., Brandt, J., Kaissis, G., Rueckert, D.: Anatomy-driven pathology detection on chest X-rays. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14220, pp. 57–66. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43907-0_6
Oh, D.Y., Kim, J., Lee, K.J.: Longitudinal change detection on chest X-rays using geometric correlation maps. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 748–756. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_83
Rousan, L.A., Elobeid, E., Karrar, M., Khader, Y.: Chest X-ray findings and temporal lung changes in patients with Covid-19 pneumonia. BMC Pulm. Med. 20(1), 1–9 (2020)
Signoroni, A., et al.: BS-Net: learning Covid-19 pneumonia severity on a large chest X-ray dataset. Med. Image Anal. 71, 102046 (2021)
Wang, W., et al.: Pyramid vision transformer: a versatile backbone for dense prediction without convolutions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 568–578 (2021)
Wu, B., Ren, S., Li, J., Sun, X., Li, S.M., Wang, Y.: Forecasting irreversible disease via progression learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8117–8125 (2021)
Zhang, L., et al.: Brain anatomy-guided MRI analysis for assessing clinical progression of cognitive impairment with structural MRI. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14227, pp. 109–119. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43993-3_11
Acknowledgments
This work is supported by Hong Kong Research Grants Council General Research Fund under Grant RGC/HKBU12200122.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhu, Y., Xu, J., Lyu, F., Yuen, P.C. (2024). Symptom Disentanglement in Chest X-Ray Images for Fine-Grained Progression Learning. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15001. Springer, Cham. https://doi.org/10.1007/978-3-031-72378-0_56
Download citation
DOI: https://doi.org/10.1007/978-3-031-72378-0_56
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72377-3
Online ISBN: 978-3-031-72378-0
eBook Packages: Computer ScienceComputer Science (R0)