Skip to main content

Symptom Disentanglement in Chest X-Ray Images for Fine-Grained Progression Learning

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15001))

  • 2651 Accesses

Abstract

Chest radiography is a commonly used diagnostic imaging exam for monitoring disease severity. Machine learning has made significant strides in static tasks (e.g., segmentation or diagnosis) based on a single medical image. However, disease progression monitoring based on longitudinal images remains fairly underexplored, which provides informative clues for early prognosis and timely intervention. In practice, the development of underlying disease typically accompanies with the occurrence and changes of multiple specific symptoms. Inspired by this, we propose a multi-stage framework to model the complex progression from symptom perspective. Specifically, we introduce two consecutive modules namely Symptom Disentangler (SD) and Symptom Progression Learner (SPL) to learn from static diagnosis to dynamic disease development. By explicitly extracting the symptom-specific features from a pair of chest radiographs using a set of learnable symptom-aware embeddings in SD module, the SPL module can leverage these features to obtain the symptom progression features, which will be utilized for the final progression prediction. Experimental results on the public dataset Chest ImaGenome show superior performance compared to current state-of-the-art method. Code is available at: https://github.com/zhuye98/SDPL.git.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ait Nasser, A., Akhloufi, M.A.: A review of recent advances in deep learning models for chest disease detection using radiography. Diagnostics 13(1), 159 (2023)

    Article  Google Scholar 

  2. Bannur, S., et al.: Learning to exploit temporal structure for biomedical vision-language processing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15016–15027 (2023)

    Google Scholar 

  3. Çallı, E., Sogancioglu, E., van Ginneken, B., van Leeuwen, K.G., Murphy, K.: Deep learning for chest x-ray analysis: a survey. Med. Image Anal. 72, 102125 (2021)

    Article  Google Scholar 

  4. Dalla Serra, F., Wang, C., Deligianni, F., Dalton, J., O’Neil, A.Q.: Controllable chest X-ray report generation from longitudinal representations. In: The 2023 Conference on Empirical Methods in Natural Language Processing (2023)

    Google Scholar 

  5. Emre, T., Chakravarty, A., Rivail, A., Riedl, S., Schmidt-Erfurth, U., Bogunović, H.: TINC: temporally informed non-contrastive learning for disease progression modeling in retinal OCT volumes. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13432, pp. 625–634. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16434-7_60

    Chapter  Google Scholar 

  6. Hou, B., Kaissis, G., Summers, R.M., Kainz, B.: RATCHET: medical transformer for chest X-ray diagnosis and reporting. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12907, pp. 293–303. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_28

    Chapter  Google Scholar 

  7. Huang, C., et al.: DADP: dynamic abnormality detection and progression for longitudinal knee magnetic resonance images from the osteoarthritis initiative. Med. Image Anal. 77, 102343 (2022)

    Article  Google Scholar 

  8. Irvin, J., et al.: CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison. In: Thirty-Third AAAI Conference on Artificial Intelligence (2019)

    Google Scholar 

  9. Johnson, A.E., et al.: MIMIC-CXR-JPG, a large publicly available database of labeled chest radiographs. arXiv preprint arXiv:1901.07042 (2019)

  10. Karwande, G., Mbakwe, A.B., Wu, J.T., Celi, L.A., Moradi, M., Lourentzou, I.: CheXRelNet: an anatomy-aware model for tracking longitudinal relationships between chest X-rays. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13431, pp. 581–591. Springer, Cham (2022)

    Google Scholar 

  11. Li, M.D., et al.: Siamese neural networks for continuous disease severity evaluation and change detection in medical imaging. NPJ Digit. Med. 3(1), 48 (2020)

    Article  MathSciNet  Google Scholar 

  12. Liang, W., et al.: Modeling Alzheimers’ disease progression from multi-task and self-supervised learning perspective with brain networks. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14220, pp. 310–319. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43907-0_30

    Chapter  Google Scholar 

  13. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  14. Luo, Y., Shi, M., Tian, Y., Elze, T., Wang, M.: Harvard glaucoma detection and progression: a multimodal multitask dataset and generalization-reinforced semi-supervised learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 20471–20482 (2023)

    Google Scholar 

  15. Mbakwe, A.B., Wang, L., Moradi, M., Lourentzou, I.: Hierarchical vision transformers for disease progression detection in chest X-ray images. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14224, pp. 685–695. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43904-9_66

    Chapter  Google Scholar 

  16. Müller, P., Meissen, F., Brandt, J., Kaissis, G., Rueckert, D.: Anatomy-driven pathology detection on chest X-rays. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14220, pp. 57–66. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43907-0_6

    Chapter  Google Scholar 

  17. Oh, D.Y., Kim, J., Lee, K.J.: Longitudinal change detection on chest X-rays using geometric correlation maps. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 748–756. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_83

    Chapter  Google Scholar 

  18. Rousan, L.A., Elobeid, E., Karrar, M., Khader, Y.: Chest X-ray findings and temporal lung changes in patients with Covid-19 pneumonia. BMC Pulm. Med. 20(1), 1–9 (2020)

    Article  Google Scholar 

  19. Signoroni, A., et al.: BS-Net: learning Covid-19 pneumonia severity on a large chest X-ray dataset. Med. Image Anal. 71, 102046 (2021)

    Article  Google Scholar 

  20. Wang, W., et al.: Pyramid vision transformer: a versatile backbone for dense prediction without convolutions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 568–578 (2021)

    Google Scholar 

  21. Wu, B., Ren, S., Li, J., Sun, X., Li, S.M., Wang, Y.: Forecasting irreversible disease via progression learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8117–8125 (2021)

    Google Scholar 

  22. Zhang, L., et al.: Brain anatomy-guided MRI analysis for assessing clinical progression of cognitive impairment with structural MRI. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14227, pp. 109–119. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43993-3_11

    Chapter  Google Scholar 

Download references

Acknowledgments

This work is supported by Hong Kong Research Grants Council General Research Fund under Grant RGC/HKBU12200122.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pong C. Yuen .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, Y., Xu, J., Lyu, F., Yuen, P.C. (2024). Symptom Disentanglement in Chest X-Ray Images for Fine-Grained Progression Learning. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15001. Springer, Cham. https://doi.org/10.1007/978-3-031-72378-0_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72378-0_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72377-3

  • Online ISBN: 978-3-031-72378-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics