Skip to main content

Fundus2Video: Cross-Modal Angiography Video Generation from Static Fundus Photography with Clinical Knowledge Guidance

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Fundus Fluorescein Angiography (FFA) is a critical tool for assessing retinal vascular dynamics and aiding in the diagnosis of eye diseases. However, its invasive nature and less accessibility compared to Color Fundus (CF) images pose significant challenges. Current CF to FFA translation methods are limited to static generation. In this work, we pioneer dynamic FFA video generation from static CF images. We introduce an autoregressive GAN for smooth, memory-saving frame-by-frame FFA synthesis. To enhance the focus on dynamic lesion changes in FFA regions, we design a knowledge mask based on clinical experience. Leveraging this mask, our approach integrates innovative knowledge mask-guided techniques, including knowledge-boosted attention, knowledge-aware discriminators, and mask-enhanced patchNCE loss, aimed at refining generation in critical areas and addressing the pixel misalignment challenge. Our method achieves the best FVD of 1503.21 and PSNR of 11.81 compared to other common video generation approaches. Human assessment by an ophthalmologist confirms its high generation quality. Notably, our knowledge mask surpasses supervised lesion segmentation masks, offering a promising non-invasive alternative to traditional FFA for research and clinical applications. The code is available at https://github.com/Michi-3000/Fundus2Video.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, R., et al.: Translating color fundus photography to indocyanine green angiography using deep-learning for age-related macular degeneration screening. NPJ Digit. Med. 7(1), 34 (2024)

    Article  Google Scholar 

  2. Chen, Y., et al.: Series-parallel generative adversarial network architecture for translating from fundus structure image to fluorescence angiography. Appl. Sci. 12(20), 10673 (2022)

    Article  Google Scholar 

  3. Comin, C.H., Tsirukis, D.I., Sun, Y., Xu, X.: Quantification of retinal blood leakage in fundus fluorescein angiography in a retinal angiogenesis model. Sci. Rep. 11(1), 19903 (2021)

    Article  Google Scholar 

  4. De Carlo, T.E., Romano, A., Waheed, N.K., Duker, J.S.: A review of optical coherence tomography angiography (octa). Int. J. Retina Vitreous 1, 1–15 (2015)

    Article  Google Scholar 

  5. Dorjsembe, Z., Pao, H.K., Odonchimed, S., Xiao, F.: Conditional diffusion models for semantic 3D medical image synthesis. arXiv preprint arXiv:2305.18453 (2023)

  6. Faust, O., Acharya, U.R., Ng, E.Y.K., Ng, K.H., Suri, J.S.: Algorithms for the automated detection of diabetic retinopathy using digital fundus images: a review. J. Med. Syst. 36, 145–157 (2012)

    Article  Google Scholar 

  7. Freeman, W.R., Bartsch, D.U., Mueller, A.J., Banker, A.S., Weinreb, R.N.: Simultaneous indocyanine green and fluorescein angiography using a confocal scanning laser ophthalmoscope. Arch. Ophthalmol. 116(4), 455–463 (1998)

    Article  Google Scholar 

  8. Huynh-Thu, Q., Ghanbari, M.: Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 44(13), 800–801 (2008)

    Article  Google Scholar 

  9. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. (ToG) 36(4), 1–14 (2017)

    Article  Google Scholar 

  10. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  11. Kamran, S.A., Hossain, K.F., Tavakkoli, A., Zuckerbrod, S.L.: Attention2Angiogan: synthesizing fluorescein angiography from retinal fundus images using generative adversarial networks. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 9122–9129. IEEE (2021)

    Google Scholar 

  12. Kamran, S.A., Hossain, K.F., Tavakkoli, A., Zuckerbrod, S.L., Sanders, K.M., Baker, S.A.: RV-GAN: segmenting retinal vascular structure in fundus photographs using a novel multi-scale generative adversarial network. In: de Bruijne, M., et al. (eds.) MICCAI 2021, Part VIII. LNCS, vol. 12908, pp. 34–44. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_4

    Chapter  Google Scholar 

  13. Kylstra, J.A., et al.: The importance of fluorescein angiography in planning laser treatment of diabetic macular edema. Ophthalmology 106(11), 2068–2073 (1999)

    Article  Google Scholar 

  14. Li, F., Hu, Z., Chen, W., Kak, A.: Adaptive supervised PatchNCE loss for learning H &E-to-IHC stain translation with inconsistent groundtruth image pairs. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14225, pp. 632–641. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43987-2_61

    Chapter  Google Scholar 

  15. Pan, J., Wang, C., Jia, X., Shao, J., Sheng, L., Yan, J., Wang, X.: Video generation from single semantic label map. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3733–3742 (2019)

    Google Scholar 

  16. Park, K.B., Choi, S.H., Lee, J.Y.: M-GAN: retinal blood vessel segmentation by balancing losses through stacked deep fully convolutional networks. IEEE Access 8, 146308–146322 (2020)

    Article  Google Scholar 

  17. Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  18. Ren, W., et al.: Consisti2V: enhancing visual consistency for image-to-video generation. arXiv preprint arXiv:2402.04324 (2024)

  19. Shi, D., He, S., Yang, J., Zheng, Y., He, M.: One-shot retinal artery and vein segmentation via cross-modality pretraining. Ophthalmol. Sci. 4(2), 100363 (2024)

    Article  Google Scholar 

  20. Shi, D., et al.: Translation of color fundus photography into fluorescein angiography using deep learning for enhanced diabetic retinopathy screening. Ophthalmol. Sci. 3(4), 100401 (2023)

    Article  Google Scholar 

  21. Sinthanayothin, C., et al.: Automated detection of diabetic retinopathy on digital fundus images. Diabet. Med. 19(2), 105–112 (2002)

    Article  Google Scholar 

  22. Song, F., Zhang, W., Zheng, Y., Shi, D., He, M.: A deep learning model for generating fundus autofluorescence images from color fundus photography. Adv. Ophthalmol. Pract. Res. 3(4), 192–198 (2023)

    Article  Google Scholar 

  23. Tavakkoli, A., Kamran, S.A., Hossain, K.F., Zuckerbrod, S.L.: A novel deep learning conditional generative adversarial network for producing angiography images from retinal fundus photographs. Sci. Rep. 10(1), 1–15 (2020)

    Article  Google Scholar 

  24. Unterthiner, T., van Steenkiste, S., Kurach, K., Marinier, R., Michalski, M., Gelly, S.: FVD: a new metric for video generation (2019)

    Google Scholar 

  25. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8798–8807 (2018)

    Google Scholar 

  26. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  27. Yannuzzi, L.A., et al.: Ophthalmic fundus imaging: today and beyond. Am. J. Ophthalmol. 137(3), 511–524 (2004)

    Article  Google Scholar 

  28. Yannuzzi, L.A., et al.: Fluorescein angiography complication survey. Ophthalmology 93(5), 611–617 (1986)

    Article  Google Scholar 

  29. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

Download references

Acknowledgments

The study was supported by the Global STEM Professorship Scheme (P0046113) and the Start-up Fund for RAPs under the Strategic Hiring Scheme (P0048623) from HKSAR. The sponsors or funding organizations had no role in the design or conduct of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danli Shi .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

A patent has been filed for this innovation (CN 202410360491.4).

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2330 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, W. et al. (2024). Fundus2Video: Cross-Modal Angiography Video Generation from Static Fundus Photography with Clinical Knowledge Guidance. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15001. Springer, Cham. https://doi.org/10.1007/978-3-031-72378-0_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72378-0_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72377-3

  • Online ISBN: 978-3-031-72378-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics