Skip to main content

Survival Analysis of Histopathological Image Based on a Pretrained Hypergraph Model of Spatial Transcriptomics Data

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Survival analysis is essential in clinical decision-making and prognosis for breast cancer, a leading cause of mortality among women worldwide. Traditional methods often integrate histopathology images with bulk RNA-seq data to predict patient outcomes. While these multimodal approaches have enhanced the precision of survival predictions, they typically overlook the spatial distribution of cellular elements, a factor critical in understanding tumor behavior and progression. This study introduces a pioneering framework, the Multimodal Hypergraph Neural Network for survival analysis (MHNN-surv), which innovatively combines spatial transcriptomics with Whole-Slide Imaging (WSI) data. Our approach starts with the segmentation of WSI into image patches, followed by feature extraction and predictive modeling of gene expressions. We construct a novel dual hypergraph model where the image-based hypergraph is built using three-dimensional nearest-neighbor relationships, and the gene-based hypergraph leverages spatial transcriptional similarities. This dual-model integration allows for an advanced level of analysis, harnessing the rich morphological and genetic data to provide a more granular understanding of tumor environments. MHNN-surv employs the Cox proportional hazards model to perform robust survival analysis, demonstrating superior performance over existing state-of-the-art multimodal models through extensive validation on a comprehensive breast cancer dataset. Our findings not only affirm the benefit of integrating spatial genomic data into survival analysis but also pave the way for more precise and individualized cancer treatment strategies, potentially transforming patient care by providing deeper insights into the underlying mechanisms of tumor progression and resistance to therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/Peter554/StainTools.

References

  1. Nagy,Á., Munkácsy,G. and Győrffy,B. Pancancer survival analysis of cancer hallmark genes. Sci Rep 11, 6047 (2021).

    Article  Google Scholar 

  2. Shrivastavat, S.S., Sant, A., Aharwal, R.P.: An overview on data mining approach on breast cancer data. Int. J. Adv. Comput. Res. 3, 256 (2013)

    Google Scholar 

  3. Xie, J., Pu, X., He, J. et al.: Survival prediction on intrahepatic cholangiocarcinoma with histomorphological analysis on the whole slide images. Comput. Biol. Med. 146, 105520 (2022).

    Article  Google Scholar 

  4. He, X., Liu, X., Zuo, F. et al.: Artificial intelligence-based multi-omics analysis fuels cancer precision medicine. Semin. in Cancer. Biol. 88, 187-200 (2023).

    Article  Google Scholar 

  5. He, X., Liu, X., Zuo, F. et al.: Artificial intelligence-based multi-omics analysis fuels cancer precision medicine. Semin. in Cancer. Biol. 88, 187-200 (2023).

    Article  Google Scholar 

  6. Tong, L., Mitchel, J., Chatlin, K. et al. Deep learning based feature-level integration of multi-omics data for breast cancer patients survival analysis. BMC. Med. Inform. Decis. Mak. 20, 225 (2020).

    Article  Google Scholar 

  7. Győrffy, B.: Survival analysis across the entire transcriptome identifies biomarkers with the highest prognostic power in breast cancer. Comput. Struct. Biotech. 19, 4101-4109 (2021).

    Article  Google Scholar 

  8. Zhang, H., Cheng, M., Ji, L. et al.: Utilizing tumor microenvironment microbial profiles and host gene expressions for survival subtyping in diverse types of cancers. bioRxiv. 2023.05. 18.541268 (2023).

    Google Scholar 

  9. Fu, T., Dai, LJ., Wu, SY. et al. Spatial architecture of the immune microenvironment orchestrates tumor immunity and therapeutic response. J. Hematol. Oncol. 14, 98 (2021)

    Article  Google Scholar 

  10. Malagoli Tagliazucchi, G., Wiecek, A.J., Withnell, E. et al. Genomic and microenvironmental heterogeneity shaping epithelial-to-mesenchymal trajectories in cancer. Nat. Commun. 14, 789 (2023).

    Article  Google Scholar 

  11. Shi, Zhen-Duo, et al. Tumor cell plasticity in targeted therapy-induced resistance: mechanisms and new strategies. Signal Transduction and Targeted Therapy 8.1 (2023): 113.

    Google Scholar 

  12. Di, Donglin, et al. Generating hypergraph-based high-order representations of whole-slide histopathological images for survival prediction. IEEE Trans. Pattern Anal. Mach. Intell. 45.5 (2022): 5800-5815.

    Google Scholar 

  13. Feng, Yifan, et al. Hypergraph neural networks. in AAAI, 33.01 (2019): 3558-3565.

    Google Scholar 

  14. Karim, M. R., Wicaksono, G., Costa, I. G. et al. Prognostically relevant subtypes and survival prediction for breast cancer based on multimodal genomics data. IEEE Access 7 (2019): 133850-133864.

    Article  Google Scholar 

  15. Cheerla, A., and Gevaert, O. Deep learning with multimodal representation for pancancer prognosis prediction. Bioinformatics 35.14 (2019): i446-i454.

    Article  Google Scholar 

  16. Palmal, S., Arya, N., Saha, S. et al. Integrative prognostic modeling for breast cancer: Unveiling optimal multimodal combinations using graph convolutional networks and calibrated random forest. Applied. Soft. Computing., 154, 111379 (2024).

    Article  Google Scholar 

  17. Lin, D. Y., Wei, L. J., and Ying, Z. Checking the Cox model with cumulative sums of martingale-based residuals. Biometrika 80.3 (1993): 557-572.

    Article  MathSciNet  Google Scholar 

  18. Bender R, Augustin T, Blettner M. Generating survival times to simulate Cox proportional hazards models. Statistics in medicine. 2005 Jun 15;24(11):1713-23.

    Google Scholar 

  19. C. Kandoth, M.D. McLellan, F. Vandin, K. et al. Mutational landscape and significance across 12 major cancer types, Nature 502 (7471) (2013) 333-339.

    Google Scholar 

  20. H. Steck, B. Krishnapuram, C. Dehing-Oberije, P. et al. “On ranking in survival analysis: Bounds on the concordance index,” Adv. Neural Inf. Process. Syst., vol. 20, 2007.

    Google Scholar 

  21. R.J. Chen, M.Y. Lu, J. Wang. et al. Pathomic fusion: an integrated framework for fusing histopathology and genomic features for cancer diagnosis and prognosis, IEEE Trans. Med. Imaging 41 (4) (2020) 757-770.

    Google Scholar 

  22. X. Zhu, J. Yao, J. Huang, Deep convolutional neural network for survival analysis with pathological images, in: 2016 IEEE International Conference on Bioinformatics and Biomedicine, BIBM, IEEE, 2016, pp. 544-547.

    Google Scholar 

  23. Hao, J., Kim, Y., Mallavarapu, T. et al. Cox-PASNet: pathway-based sparse deep neural network for survival analysis. in BIBM, 2018, pp. 381-386.

    Google Scholar 

  24. Mobadersany, P., Yousefi, S., Amgad, M. et al. Predicting cancer outcomes from histology and genomics using convolutional networks, Proc. Natl. Acad. Sci., 115 (13) (2018) E2970-E2979.

    Article  Google Scholar 

  25. Li, Le, et al. PMFN-SSL: Self-supervised learning-based progressive multimodal fusion network for cancer diagnosis and prognosis. Knowledge-Based Systems (2024): 111502.

    Google Scholar 

  26. Simon, N., Friedman, J., Hastie, T. et al. Regularization paths for Cox’s proportional hazards model via coordinate descent, J. Stat. Softw. 39 (5) (2011) 1

    Article  Google Scholar 

  27. Steck, H., Krishnapuram, B., Dehing-Oberije, C. et al. On ranking in survival analysis: Bounds on the concordance index. Adv. Neural Inf. Process. Syst., vol. 20, (2007).

    Google Scholar 

  28. Liu, P., Fu, B., Ye, F. et al. DSCA: A dual-stream network with crossattention on whole-slide image pyramids for cancer prognosis, Expert Syst. Appl. 227 (2023) 120280.

    Article  Google Scholar 

  29. Hao, J., Kosaraju, S. C., Tsaku, N. Z. et al. PAGE-Net: interpretable and integrative deep learning for survival analysis using histopathological images and genomic data, in: Pacific Symposium on Biocomputing 2020, World Scientific, 2019, pp. 355-366.

    Google Scholar 

  30. Xie, Y., Niu, G., Da, Q. et al. Survival prediction for gastric cancer via multimodal learning of whole slide images and gene expression, in BIBM, 2022, pp. 1311-1316.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luonan Chen or Weifeng Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cai, S. et al. (2024). Survival Analysis of Histopathological Image Based on a Pretrained Hypergraph Model of Spatial Transcriptomics Data. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15003. Springer, Cham. https://doi.org/10.1007/978-3-031-72384-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72384-1_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72383-4

  • Online ISBN: 978-3-031-72384-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics