Skip to main content

Analyzing Cross-Population Domain Shift in Chest X-Ray Image Classification and Mitigating the Gap with Deep Supervised Domain Adaptation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Medical image analysis, empowered by artificial intelligence (AI), plays a crucial role in modern healthcare diagnostics. However, the effectiveness of machine learning models hinges on their ability to generalize to diverse patient populations, presenting domain shift challenges. This study investigates the domain shift problem within chest X-ray classification, with a particular emphasis on cross-population variations, especially within underrepresented groups. We examine the domain shift of a supervised version of Adversarial Domain Adaptation (ADA) across three distinct population datasets (sources), using a Nigerian chest X-ray dataset as the target dataset. By evaluating model performance, we quantify the disparities between the source and target populations. Our experiments revealed varying model performance when trained on the source domain and evaluated on the target domain. To address this variability, we propose a supervised domain adaptation technique that leverages labeled data from both domains for fine-tuning. The results demonstrate significant enhancements in model accuracy for chest X-ray classification in the Nigerian dataset. This research underscores the importance of domain-aware model development in AI-driven healthcare, contributing to addressing cross-population domain-shift challenges in medical imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bajwa, J., Munir, U., Nori, A., Williams, B.: Artificial intelligence in healthcare: transforming the practice of medicine. Future Healthc J 8 (2021) e188-e194

    Article  Google Scholar 

  2. Singh, V.K., Rashwan, H.A., Abdel-Nasser, M., Akram, F., Haffar, R., Pandey, N., Arenas, M., Romani, S., Puig, D.: A computer-aided diagnosis system for breast cancer molecular subtype prediction in mammographic images. Elsevier eBooks (2021) 153–178

    Google Scholar 

  3. Reardon, S.: Rise of robot radiologists. Nature 576 (2019) S54–S58

    Article  Google Scholar 

  4. Ricci, A., Echeveste, R., Ferrante, E.: Addressing fairness in artificial intelligence for medical imaging. Nature Communications 13 (2022)

    Google Scholar 

  5. : Chest X-Ray, https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/chest-xray (2019)

  6. Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Annual Review of Biomedical Engineering 19 (2017) 221–248

    Article  Google Scholar 

  7. Luo, Y., Zheng, L., Guan, T., Yu, J., Yang, Y.: Taking a closer look at domain shift: Category-level adversaries for semantics consistent domain adaptation. ArXiv (2018)

    Google Scholar 

  8. : Imagenet, https://www.image-net.org/challenges/lsvrc/2017/index.php (2017)

  9. Stacke, K., Eilertsen, G., Unger, J., Lundström, C.: Measuring domain shift for deep learning in histopathology. IEEE Journal of Biomedical and Health Informatics 25 (2021) 325–336

    Article  Google Scholar 

  10. Hong, J., Yu, S.C.H., Chen, W.: Unsupervised domain adaptation for cross-modality liver segmentation via joint adversarial learning and self-learning. Applied Soft Computing 121 (2022) 108729

    Article  Google Scholar 

  11. Xing, F., Bennett, T.D., Ghosh, D.: Adversarial domain adaptation and pseudo-labeling for cross-modality microscopy image quantification. Lecture Notes in Computer Science 11840 (2019) 740–749

    Article  Google Scholar 

  12. Kermany, D.S., Goldbaum, M., Cai, W., Valentim, C.C., Liang, H., Baxter, S.L., McKeown, A., Yang, G., Wu, X., Yan, F., Dong, J., Prasadha, M.K., Pei, J., Ting, M.Y., Zhu, J., Li, C., Hewett, S., Dong, J., Ziyar, I., Shi, A., Zhang, R., Zheng, L., Hou, R., Shi, W., Fu, X., Duan, Y., Huu, V.A., Wen, C., Zhang, E.D., Zhang, C.L., Li, O., Wang, X., Singer, M.A., Sun, X., Xu, J., Tafreshi, A., Lewis, M.A., Xia, H., Zhang, K.: Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172 (2018) 1122–1131.e9

    Article  Google Scholar 

  13. Musa, A., Adam, F.M., Ibrahim, U., Zandam, A.Y.: Learning from small datasets: An efficient deep learning model for covid-19 detection from chest X-Ray using dataset distillation technique. In: 2022 IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development (NIGERCON). (2022) 1–6

    Google Scholar 

  14. Won Jo, S., Seok, J.: A study on deep learning-based classification for pneumonia detection. In: 2022 13th International Conference on Information and Communication Technology Convergence (ICTC). (2022) 1496–1498

    Google Scholar 

  15. Vinoth, R., Subalakshmi, S., Thamaraichandra, S.: Pneumonia detection from chest X-Ray using alexnet image classification technique. In: 2023 7th International Conference on Intelligent Computing and Control Systems (ICICCS). (2023) 1307–1312

    Google Scholar 

  16. Ranjan, V., Harit, G., Jawahar, C.: Domain adaptation by aligning locality preserving subspaces. ICAPR 2015 - 2015 8th International Conference on Advances in Pattern Recognition (2015)

    Google Scholar 

  17. Cohen, J.P., Hashir, M., Brooks, R., Bertrand, H.: On the limits of cross-domain generalization in automated X-Ray prediction. ArXiv (2020)

    Google Scholar 

  18. Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D.Y., Bagul, A., Langlotz, C., Shpanskaya, K., Lungren, M.P., Ng, A.Y.: Chexnet: Radiologist-level pneumonia detection on chest X-Rays with deep learning. ArXiv (2017)

    Google Scholar 

  19. Lenga, M., Schulz, H., Saalbach, A.: Continual learning for domain adaptation in chest X-Ray classification. Proceedings of Machine Learning Research (2020)

    Google Scholar 

  20. Zhao, T.: Seismic facies classification using different deep convolutional neural networks. Seg Technical Program Expanded Abstracts (2018)

    Google Scholar 

  21. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: International conference on machine learning, PMLR (2015) 1180–1189

    Google Scholar 

  22. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., March, M., Lempitsky, V.: Domain-adversarial training of neural networks. Journal of machine learning research 17 (2016) 1–35

    MathSciNet  Google Scholar 

  23. He, G., Liu, X., Fan, F., You, J.: Classification-aware semi-supervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. (2020) 964–965

    Google Scholar 

  24. Liu, X., Zou, Y., Kong, L., Diao, Z., Yan, J., Wang, J., Li, S., Jia, P., You, J.: Data augmentation via latent space interpolation for image classification. In: 2018 24th International Conference on Pattern Recognition (ICPR), IEEE (2018) 728–733

    Google Scholar 

  25. Yu, M., Guan, H., Fang, Y., Yue, L., Liu, M.: Domain-prior-induced structural mri adaptation for clinical progression prediction of subjective cognitive decline. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer (2022) 24–33

    Google Scholar 

  26. Shelke, A., Inamdar, M., Shah, V., Tiwari, A., Hussain, A., Chafekar, T., Mehendale, N.: Chest X-Ray classification using deep learning for automated covid-19 screening. Sn Computer Science 2 (2021) 300

    Article  Google Scholar 

  27. Feng, Y., Xu, X., Wang, Y., Lei, X., Teo, S.K., Zheng, J., Ting, Y., Zhen, L., Zhou, J.T., Liu, Y., Tan, C.H.: Deep supervised domain adaptation for pneumonia diagnosis from chest X-Ray images. IEEE Journal of Biomedical and Health Informatics 26 (2022) 1080–1090

    Article  Google Scholar 

  28. Seyyed-Kalantari, L., Zhang, H., McDermott, M.B.A., Chen, I.Y., Ghassemi, M.: Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations. Nature Medicine 27 (2021) 2176-2182

    Article  Google Scholar 

  29. Pooch, E.H.P., Ballester, P., Barros, R.C.: Can we trust deep learning based diagnosis? the impact of domain shift in chest radiograph classification. In Petersen, J., San José Estépar, R., Schmidt-Richberg, A., Gerard, S., Lassen-Schmidt, B., Jacobs, C., Beichel, R., Mori, K., eds.: Thoracic Image Analysis, Cham, Springer International Publishing (2020) 74–83

    Google Scholar 

  30. Long, M., Cao, Y., Wang, J., Jordan, M., Edu, J.: Learning transferable features with deep adaptation networks. Proceedings of Machine Learning Research (2015)

    Google Scholar 

  31. Thiam, P., Lausser, L., Kloth, C., Blaich, D., Liebold, A., Beer, M., Kestler, H.A.: Unsupervised domain adaptation for the detection of cardiomegaly in cross-domain chest X-Ray images. Frontiers in Artificial Intelligence 6 (2023) 1056422

    Article  Google Scholar 

  32. He, B., Chen, Y., Zhu, D., Xu, Z.: Domain adaptation via wasserstein distance and discrepancy metric for chest X-Ray image classification. Research Square (2023)

    Google Scholar 

  33. He, B., Chen, Y., Zhu, D., Xu, Z.: Domain adaptation via wasserstein distance and discrepancy metric for chest X-Ray image classification. Scientific Reports 14 (2024) 2690

    Article  Google Scholar 

  34. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  35. : VinDr-CXR: An open dataset and benchmarks for disease classification and abnormality localization on chest radiographs | vindr (2020)

    Google Scholar 

  36. Rahman, T.: Covid-19 radiography database (2020)

    Google Scholar 

  37. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) 2261–2269

    Google Scholar 

  38. HassanPour Zonoozi, M., Seydi, V.: A survey on adversarial domain adaptation. Neural Process Lett 55 (2023) 2429–2469

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habeebah Adamu Kakudi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Musa, A., Ibrahim Adamu, M., Kakudi, H.A., Hernandez, M., Lawal, Y. (2024). Analyzing Cross-Population Domain Shift in Chest X-Ray Image Classification and Mitigating the Gap with Deep Supervised Domain Adaptation. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15003. Springer, Cham. https://doi.org/10.1007/978-3-031-72384-1_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72384-1_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72383-4

  • Online ISBN: 978-3-031-72384-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics