Abstract
Medical image analysis, empowered by artificial intelligence (AI), plays a crucial role in modern healthcare diagnostics. However, the effectiveness of machine learning models hinges on their ability to generalize to diverse patient populations, presenting domain shift challenges. This study investigates the domain shift problem within chest X-ray classification, with a particular emphasis on cross-population variations, especially within underrepresented groups. We examine the domain shift of a supervised version of Adversarial Domain Adaptation (ADA) across three distinct population datasets (sources), using a Nigerian chest X-ray dataset as the target dataset. By evaluating model performance, we quantify the disparities between the source and target populations. Our experiments revealed varying model performance when trained on the source domain and evaluated on the target domain. To address this variability, we propose a supervised domain adaptation technique that leverages labeled data from both domains for fine-tuning. The results demonstrate significant enhancements in model accuracy for chest X-ray classification in the Nigerian dataset. This research underscores the importance of domain-aware model development in AI-driven healthcare, contributing to addressing cross-population domain-shift challenges in medical imaging.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bajwa, J., Munir, U., Nori, A., Williams, B.: Artificial intelligence in healthcare: transforming the practice of medicine. Future Healthc J 8 (2021) e188-e194
Singh, V.K., Rashwan, H.A., Abdel-Nasser, M., Akram, F., Haffar, R., Pandey, N., Arenas, M., Romani, S., Puig, D.: A computer-aided diagnosis system for breast cancer molecular subtype prediction in mammographic images. Elsevier eBooks (2021) 153–178
Reardon, S.: Rise of robot radiologists. Nature 576 (2019) S54–S58
Ricci, A., Echeveste, R., Ferrante, E.: Addressing fairness in artificial intelligence for medical imaging. Nature Communications 13 (2022)
: Chest X-Ray, https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/chest-xray (2019)
Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Annual Review of Biomedical Engineering 19 (2017) 221–248
Luo, Y., Zheng, L., Guan, T., Yu, J., Yang, Y.: Taking a closer look at domain shift: Category-level adversaries for semantics consistent domain adaptation. ArXiv (2018)
: Imagenet, https://www.image-net.org/challenges/lsvrc/2017/index.php (2017)
Stacke, K., Eilertsen, G., Unger, J., Lundström, C.: Measuring domain shift for deep learning in histopathology. IEEE Journal of Biomedical and Health Informatics 25 (2021) 325–336
Hong, J., Yu, S.C.H., Chen, W.: Unsupervised domain adaptation for cross-modality liver segmentation via joint adversarial learning and self-learning. Applied Soft Computing 121 (2022) 108729
Xing, F., Bennett, T.D., Ghosh, D.: Adversarial domain adaptation and pseudo-labeling for cross-modality microscopy image quantification. Lecture Notes in Computer Science 11840 (2019) 740–749
Kermany, D.S., Goldbaum, M., Cai, W., Valentim, C.C., Liang, H., Baxter, S.L., McKeown, A., Yang, G., Wu, X., Yan, F., Dong, J., Prasadha, M.K., Pei, J., Ting, M.Y., Zhu, J., Li, C., Hewett, S., Dong, J., Ziyar, I., Shi, A., Zhang, R., Zheng, L., Hou, R., Shi, W., Fu, X., Duan, Y., Huu, V.A., Wen, C., Zhang, E.D., Zhang, C.L., Li, O., Wang, X., Singer, M.A., Sun, X., Xu, J., Tafreshi, A., Lewis, M.A., Xia, H., Zhang, K.: Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172 (2018) 1122–1131.e9
Musa, A., Adam, F.M., Ibrahim, U., Zandam, A.Y.: Learning from small datasets: An efficient deep learning model for covid-19 detection from chest X-Ray using dataset distillation technique. In: 2022 IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development (NIGERCON). (2022) 1–6
Won Jo, S., Seok, J.: A study on deep learning-based classification for pneumonia detection. In: 2022 13th International Conference on Information and Communication Technology Convergence (ICTC). (2022) 1496–1498
Vinoth, R., Subalakshmi, S., Thamaraichandra, S.: Pneumonia detection from chest X-Ray using alexnet image classification technique. In: 2023 7th International Conference on Intelligent Computing and Control Systems (ICICCS). (2023) 1307–1312
Ranjan, V., Harit, G., Jawahar, C.: Domain adaptation by aligning locality preserving subspaces. ICAPR 2015 - 2015 8th International Conference on Advances in Pattern Recognition (2015)
Cohen, J.P., Hashir, M., Brooks, R., Bertrand, H.: On the limits of cross-domain generalization in automated X-Ray prediction. ArXiv (2020)
Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D.Y., Bagul, A., Langlotz, C., Shpanskaya, K., Lungren, M.P., Ng, A.Y.: Chexnet: Radiologist-level pneumonia detection on chest X-Rays with deep learning. ArXiv (2017)
Lenga, M., Schulz, H., Saalbach, A.: Continual learning for domain adaptation in chest X-Ray classification. Proceedings of Machine Learning Research (2020)
Zhao, T.: Seismic facies classification using different deep convolutional neural networks. Seg Technical Program Expanded Abstracts (2018)
Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: International conference on machine learning, PMLR (2015) 1180–1189
Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., March, M., Lempitsky, V.: Domain-adversarial training of neural networks. Journal of machine learning research 17 (2016) 1–35
He, G., Liu, X., Fan, F., You, J.: Classification-aware semi-supervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. (2020) 964–965
Liu, X., Zou, Y., Kong, L., Diao, Z., Yan, J., Wang, J., Li, S., Jia, P., You, J.: Data augmentation via latent space interpolation for image classification. In: 2018 24th International Conference on Pattern Recognition (ICPR), IEEE (2018) 728–733
Yu, M., Guan, H., Fang, Y., Yue, L., Liu, M.: Domain-prior-induced structural mri adaptation for clinical progression prediction of subjective cognitive decline. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer (2022) 24–33
Shelke, A., Inamdar, M., Shah, V., Tiwari, A., Hussain, A., Chafekar, T., Mehendale, N.: Chest X-Ray classification using deep learning for automated covid-19 screening. Sn Computer Science 2 (2021) 300
Feng, Y., Xu, X., Wang, Y., Lei, X., Teo, S.K., Zheng, J., Ting, Y., Zhen, L., Zhou, J.T., Liu, Y., Tan, C.H.: Deep supervised domain adaptation for pneumonia diagnosis from chest X-Ray images. IEEE Journal of Biomedical and Health Informatics 26 (2022) 1080–1090
Seyyed-Kalantari, L., Zhang, H., McDermott, M.B.A., Chen, I.Y., Ghassemi, M.: Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations. Nature Medicine 27 (2021) 2176-2182
Pooch, E.H.P., Ballester, P., Barros, R.C.: Can we trust deep learning based diagnosis? the impact of domain shift in chest radiograph classification. In Petersen, J., San José Estépar, R., Schmidt-Richberg, A., Gerard, S., Lassen-Schmidt, B., Jacobs, C., Beichel, R., Mori, K., eds.: Thoracic Image Analysis, Cham, Springer International Publishing (2020) 74–83
Long, M., Cao, Y., Wang, J., Jordan, M., Edu, J.: Learning transferable features with deep adaptation networks. Proceedings of Machine Learning Research (2015)
Thiam, P., Lausser, L., Kloth, C., Blaich, D., Liebold, A., Beer, M., Kestler, H.A.: Unsupervised domain adaptation for the detection of cardiomegaly in cross-domain chest X-Ray images. Frontiers in Artificial Intelligence 6 (2023) 1056422
He, B., Chen, Y., Zhu, D., Xu, Z.: Domain adaptation via wasserstein distance and discrepancy metric for chest X-Ray image classification. Research Square (2023)
He, B., Chen, Y., Zhu, D., Xu, Z.: Domain adaptation via wasserstein distance and discrepancy metric for chest X-Ray image classification. Scientific Reports 14 (2024) 2690
Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
: VinDr-CXR: An open dataset and benchmarks for disease classification and abnormality localization on chest radiographs | vindr (2020)
Rahman, T.: Covid-19 radiography database (2020)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) 2261–2269
HassanPour Zonoozi, M., Seydi, V.: A survey on adversarial domain adaptation. Neural Process Lett 55 (2023) 2429–2469
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Musa, A., Ibrahim Adamu, M., Kakudi, H.A., Hernandez, M., Lawal, Y. (2024). Analyzing Cross-Population Domain Shift in Chest X-Ray Image Classification and Mitigating the Gap with Deep Supervised Domain Adaptation. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15003. Springer, Cham. https://doi.org/10.1007/978-3-031-72384-1_55
Download citation
DOI: https://doi.org/10.1007/978-3-031-72384-1_55
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72383-4
Online ISBN: 978-3-031-72384-1
eBook Packages: Computer ScienceComputer Science (R0)