Skip to main content

FedMRL: Data Heterogeneity Aware Federated Multi-agent Deep Reinforcement Learning for Medical Imaging

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Despite recent advancements in Federated Learning (FL) for medical image diagnosis, addressing data heterogeneity among clients remains a significant challenge for practical implementation. A primary hurdle in FL arises from the non-independent and identically distributed (non-IID) nature of data samples across clients, which typically results in a decline in the performance of the aggregated global model. This study introduces FedMRL, a novel federated multi-agent deep reinforcement learning framework designed to address data heterogeneity. FedMRL incorporates a novel loss function to facilitate fairness among clients, preventing bias in the final global model. Additionally, it employs a multi-agent reinforcement learning (MARL) approach to calculate the proximal term \((\mu )\) for the personalized local objective function, ensuring convergence to the global optimum. Furthermore, FedMRL integrates an adaptive weight adjustment method using a Self-organizing map (SOM) on the server side to counteract distribution shifts among clients’ local data distributions. We assess the proposed approach using two publicly available real-world medical datasets, and the results demonstrate that FedMRL significantly outperforms state-of-the-art techniques, showing its efficacy in addressing data heterogeneity in federated learning. The code can be found here https://github.com/Pranabiitp/FedMRL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Codella, N., Rotemberg, V., Tschandl, P., Celebi, M.E., Dusza, S., Gutman, D., Helba, B., Kalloo, A., Liopyris, K., Marchetti, M., et al.: Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). arXiv preprint arXiv:1902.03368 (2019)

  2. Decencière, E., Zhang, X., Cazuguel, G., Lay, B., Cochener, B., Trone, C., Gain, P., Ordonez, R., Massin, P., Erginay, A., et al.: Feedback on a publicly distributed image database: the messidor database. Image Analysis & Stereology 33(3), 231–234 (2014)

    Article  Google Scholar 

  3. Feki, I., Ammar, S., Kessentini, Y., Muhammad, K.: Federated learning for covid-19 screening from chest x-ray images. Applied Soft Computing 106, 107330 (2021)

    Article  Google Scholar 

  4. Hosseini, S.M., Sikaroudi, M., Babaie, M., Tizhoosh, H.: Proportionally fair hospital collaborations in federated learning of histopathology images. IEEE transactions on medical imaging (2023)

    Google Scholar 

  5. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 4700–4708 (2017)

    Google Scholar 

  6. Huang, T., Lin, W., Wu, W., He, L., Li, K., Zomaya, A.: An efficiency-boosting client selection scheme for federated learning with fairness guarantee. IEEE Transactions on Parallel and Distributed Systems p. 1-1 (2020). https://doi.org/10.1109/tpds.2020.3040887, http://dx.doi.org/10.1109/TPDS.2020.3040887

  7. Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78(9), 1464–1480 (1990)

    Article  Google Scholar 

  8. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. Proceedings of Machine learning and systems 2, 429–450 (2020)

    Google Scholar 

  9. Li, T., Sanjabi, M., Beirami, A., Smith, V.: Fair resource allocation in federated learning. arXiv preprint arXiv:1905.10497 (2019)

  10. Li, X., Jiang, M., Zhang, X., Kamp, M., Dou, Q.: Fedbn: Federated learning on non-iid features via local batch normalization. arXiv preprint arXiv:2102.07623 (2021)

  11. Lu, M.Y., Chen, R.J., Kong, D., Lipkova, J., Singh, R., Williamson, D.F., Chen, T.Y., Mahmood, F.: Federated learning for computational pathology on gigapixel whole slide images. Medical image analysis 76, 102298 (2022)

    Article  Google Scholar 

  12. Lyu, L., Xu, X., Wang, Q.: Collaborative fairness in federated learning (2020)

    Google Scholar 

  13. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial intelligence and statistics. pp. 1273–1282. PMLR (2017)

    Google Scholar 

  14. McMahan, H.B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data (2023)

    Google Scholar 

  15. Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D., Bagul, A., Langlotz, C., Shpanskaya, K., et al.: Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225 (2017)

  16. Rashid, T., Samvelyan, M., de Witt, C.S., Farquhar, G., Foerster, J., Whiteson, S.: Monotonic value function factorisation for deep multi-agent reinforcement learning (2020)

    Google Scholar 

  17. Sahoo, P., Saha, S., Mondal, S., Chowdhury, S., Gowda, S.: Computer-aided covid-19 screening from chest ct-scan using a fuzzy ensemble-based technique. In: 2022 International Joint Conference on Neural Networks (IJCNN). pp. 1–8. IEEE (2022)

    Google Scholar 

  18. Sahoo, P., Saha, S., Mondal, S., Chowdhury, S., Gowda, S.: Vision transformer-based federated learning for covid-19 detection using chest x-ray. In: International Conference on Neural Information Processing. pp. 77–88. Springer (2022)

    Google Scholar 

  19. Sahoo, P., Saha, S., Sharma, S.K., Mondal, S., Gowda, S.: A multi-stage framework for covid-19 detection and severity assessment from chest radiography images using advanced fuzzy ensemble technique. Expert Systems with Applications 238, 121724 (2024)

    Article  Google Scholar 

  20. Sahoo, P., Sharma, S.K., Saha, S., Mondal, S.: A federated multi-stage light-weight vision transformer for respiratory disease detection. In: International Conference on Neural Information Processing. pp. 300–311. Springer (2023)

    Google Scholar 

  21. Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W.M., Zambaldi, V., Jaderberg, M., Lanctot, M., Sonnerat, N., Leibo, J.Z., Tuyls, K., Graepel, T.: Value-decomposition networks for cooperative multi-agent learning (2017)

    Google Scholar 

  22. Wang, J., Liu, Q., Liang, H., Joshi, G., Poor, H.V.: Tackling the objective inconsistency problem in heterogeneous federated optimization (2020)

    Google Scholar 

  23. Wang, X., Shen, T., Yang, S., Lan, J., Xu, Y., Wang, M., Zhang, J., Han, X.: A deep learning algorithm for automatic detection and classification of acute intracranial hemorrhages in head ct scans. NeuroImage: Clinical 32, 102785 (2021)

    Google Scholar 

  24. Yan, R., Qu, L., Wei, Q., Huang, S.C., Shen, L., Rubin, D., Xing, L., Zhou, Y.: Label-efficient self-supervised federated learning for tackling data heterogeneity in medical imaging. IEEE Transactions on Medical Imaging (2023)

    Google Scholar 

  25. Yue, G., Wei, P., Zhou, T., Song, Y., Zhao, C., Wang, T., Lei, B.: Specificity-aware federated learning with dynamic feature fusion network for imbalanced medical image classification. IEEE Journal of Biomedical and Health Informatics (2023)

    Google Scholar 

  26. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning with non-iid data. arXiv preprint arXiv:1806.00582 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranab Sahoo .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors declare that there are no competing interests to report in the paper.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 125 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sahoo, P., Tripathi, A., Saha, S., Mondal, S. (2024). FedMRL: Data Heterogeneity Aware Federated Multi-agent Deep Reinforcement Learning for Medical Imaging. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15003. Springer, Cham. https://doi.org/10.1007/978-3-031-72384-1_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72384-1_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72383-4

  • Online ISBN: 978-3-031-72384-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics