Skip to main content

CausalCLIPSeg: Unlocking CLIP’s Potential in Referring Medical Image Segmentation with Causal Intervention

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Referring medical image segmentation targets delineating lesions indicated by textual descriptions. Aligning visual and textual cues is challenging due to their distinct data properties. Inspired by large-scale pre-trained vision-language models, we propose CausalCLIPSeg, an end-to-end framework for referring medical image segmentation that leverages CLIP. Despite not being trained on medical data, we enforce CLIP’s rich semantic space onto the medical domain by a tailored cross-modal decoding method to achieve text-to-pixel alignment. Furthermore, to mitigate confounding bias that may cause the model to learn spurious correlations instead of meaningful causal relationships, CausalCLIPSeg introduces a causal intervention module which self-annotates confounders and excavates causal features from inputs for segmentation judgments. We also devise an adversarial min-max game to optimize causal features while penalizing confounding ones. Extensive experiments demonstrate the state-of-the-art performance of our proposed method. Code is available at https://github.com/WUTCM-Lab/CausalCLIPSeg.

Work done during an internship at MedAI Technology (Wuxi) Co. Ltd.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhou, Y., Xie, L., Shen, W., Wang, Y., Fishman, E.K., Yuille, A.L.: A fixed-point model for pancreas segmentation in abdominal CT scans. In: International Conference on Medical Image Computing and Computer Assisted Intervention, pp. 693–701. (2017)

    Google Scholar 

  2. Gering, D.T., Nabavi, A., Kikinis, R., Grimson, W.E.L., Hata, N., Everett, P., Jolesz, F., Wells, W.M.: An integrated visualization system for surgical planning and guidance using image fusion and interventional imaging. In: International Conference on Medical Image Computing and Computer Assisted Intervention, pp. 809–819. (1999)

    Google Scholar 

  3. Li, Z., Li, Y., Li, Q., Wang, P., Guo, D., Lu, L., Jin, D., Zhang, Y., Hong, Q.: LViT: Language meets vision Transformer in medical image segmentation. IEEE Transactions on Medical Imaging 43(1), 96–107 (2024)

    Article  Google Scholar 

  4. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. (2021)

    Google Scholar 

  5. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S., Berg, A.C., Lo, W.: Segment anything. In: IEEE/CVF International Conference on Computer Vision, pp. 4015–4026. (2023)

    Google Scholar 

  6. Ali, M., Khan, S.: CLIP-Decoder: Zeroshot multilabel classification using multimodal CLIP aligned representations. In: IEEE/CVF International Conference on Computer Vision, pp. 4675–4679. (2023)

    Google Scholar 

  7. Conde, M.V., Turgutlu, K.: CLIP-Art: Contrastive pre-training for fine-grained art classification. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3956–3960. (2021)

    Google Scholar 

  8. Wang, M., Xing, J., Liu, Y.: ActionCLIP: A new paradigm for video action recognition. arXiv preprint arXiv:2109.08472 (2021)

  9. Zhu, J., Jin, J., Yang, Z., Wu, X., Wang, X.: Learning CLIP guided visual-text fusion Transformer for video-based pedestrian attribute recognition. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2625–2628. (2023)

    Google Scholar 

  10. Luo, H., Ji, L., Zhong, M., Chen, Y., Lei, W., Duan, N., Li, T.: CLIP4CLIP: An empirical study of CLIP for end to end video clip retrieval and captioning. Neurocomputing 508, 293–304 (2022)

    Article  Google Scholar 

  11. Fang, H., Xiong, P., Xu, L., Chen, Y.: CLIP2Video: Mastering video-text retrieval via image CLIP. arXiv preprint arXiv:2106.11097 (2021)

  12. Xie, Y., Liao, H., Zhang, D., Chen, F.: Uncertainty-aware cascade network for ultrasound image segmentation with ambiguous boundary. In: International Conference on Medical Image Computing and Computer Assisted Intervention, pp. 268–278. (2022)

    Google Scholar 

  13. Wang, J., Wei, L., Wang, L., Zhou, Q., Zhu, L., Qin, J.: Boundary-aware Transformers for skin lesion segmentation. In: International Conference on Medical Image Computing and Computer Assisted Intervention, pp. 206–216. (2021)

    Google Scholar 

  14. Wang, J., Yang, J., Zhou, Q., Wang, L.: Medical boundary diffusion model for skin lesion segmentation. In: International Conference on Medical Image Computing and Computer Assisted Intervention, pp. 427–436. (2023)

    Google Scholar 

  15. Pearl, J.: Causality. Cambridge University Press (2009)

    Google Scholar 

  16. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)

    Google Scholar 

  17. Wang, J., Chen, K., Xu, R., Liu, Z., Loy, C.C., Lin, D.: CARAFE: Content-aware reassembly of features. In: IEEE/CVF International Conference on Computer Vision, pp. 3007–3016. (2019)

    Google Scholar 

  18. Everingham, M., Eslami, S.M.A., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes challenge: A retrospective. International Journal of Computer Vision 111, 98–136 (2015)

    Article  Google Scholar 

  19. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer Assisted Intervention, pp. 234–241. (2015)

    Google Scholar 

  21. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: A nested U-Net architecture for medical image segmentation. In: International Conference on Medical Image Computing and Computer Assisted Intervention Workshops, pp. 3–11. (2018)

    Google Scholar 

  22. Oktay, O., Schlemper, J., Folgoc, L.L., Lee, M., Heinrich, M., Misawa, K., Mori, K., McDonagh, S., Hammerla, N.Y., Kainz, B.: Attention U-Net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  23. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation. Nature Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  24. Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A.L., Zhou, Y.: TransUNet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  25. Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q., Wang, M.: Swin-UNet: UNet-like pure Transformer for medical image segmentation. In: European Conference on Computer Vision, pp. 205–218. (2022)

    Google Scholar 

  26. Wang, H., Cao, P., Wang, J., Zaiane, O.R.: UCTransNet: Rethinking the skip connections in U-Net from a channel-wise perspective with Transformer. In: AAAI Conference on Artificial Intelligence, pp. 2441–2449. (2022)

    Google Scholar 

  27. Zhang, Y., Jiang, H., Miura, Y., Manning, C.D., Langlotz, C.P.: Contrastive learning of medical visual representations from paired images and text. In: Machine Learning for Healthcare Conference, pp. 2–25. (2022)

    Google Scholar 

  28. Tomar, N.K., Jha, D., Bagci, U., Ali, S.: TGANet: Text-guided attention for improved polyp segmentation. In: International Conference on Medical Image Computing and Computer Assisted Intervention, pp. 151–160. (2022)

    Google Scholar 

  29. Huang, S., Shen, L., Lungren, M.P., Yeung, S.: GLoRIA: A multimodal global-local representation learning framework for label-efficient medical image recognition. In: IEEE/CVF International Conference on Computer Vision, pp. 3942–3951. (2021)

    Google Scholar 

  30. Kim, W., Son, B., Kim, I.: ViLT: Vision-and-language Transformer without convolution or region supervision. In: International Conference on Machine Learning, pp. 5583–5594. (2021)

    Google Scholar 

  31. Yang, Z., Wang, J., Tang, Y., Chen, K., Zhao, H., Torr, P.H.: LAVT: Language-aware vision Transformer for referring image segmentation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18155–18165. (2022)

    Google Scholar 

Download references

Acknowledgments

This work is supported in part by the National Key Research and Development Program of China (2022ZD0160604), in part by the Natural Science Foundation of China (62101393/62176194), in part by the High-Performance Computing Platform of YZBSTCACC, and in part by MindSpore (https://www.mindspore.cn), a new deep learning framework.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lichao Mou .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this paper.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Y. et al. (2024). CausalCLIPSeg: Unlocking CLIP’s Potential in Referring Medical Image Segmentation with Causal Intervention. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15003. Springer, Cham. https://doi.org/10.1007/978-3-031-72384-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72384-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72383-4

  • Online ISBN: 978-3-031-72384-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics