Abstract
One way of determining the reputation of a scientist is by assessing the portfolio of their publications in peer-reviewed journals and conferences. However, this reputation is an incomplete measure of achievement and creates a variety of misaligned incentives that negatively influence the scientific process and cause an increased distribution of low-quality research content. In this paper, we point out some current problems in the scientific process, how they are linked to the behavioral patterns of optimizing bibliographic metrics, and present a possible solution in the form of a reputation token system. The solution is characterized by a token economy with mechanisms to create stronger incentives for high-quality contributions and deter fraud. We provide a prototypical implementation of the reputation token as a smart contract for the Ethereum blockchain with a user interface and network visualization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Data Availability Statement
The code repositories for Fungible Soulbound Tokens [3] and the Reputation Token with demonstrator visualization [5] are openly available on Github. The related work comparison [4] is available on the Open Research Knowledge Graph platform.
References
Paper mills research. Technical report (2022). https://doi.org/10.24318/jtbg8ihl
The problem with scientific publishing (2017). https://www.economist.com/the-economist-explains/2017/03/30/the-problem-with-scientific-publishing. Accessed 4 Apr 2024
Bless, C.: Fungible soulbound token (2023). https://github.com/Christof93/FungibleSBT. Accessed 26 July 2024
Bless, C.: Prototypes of decentralized scientific publishing using blockchain technology (2023). https://orkg.org/comparison/R592130. Accessed 26 July 2024
Bless, C.: ReputationToken (2024). https://github.com/Christof93/ReputationToken. Accessed 25 July 2024
Bollen, J., Crandall, D., Junk, D., Ding, Y., Börner, K.: From funding agencies to scientific agency: collective allocation of science funding as an alternative to peer review. EMBO Rep. 15(2), 131–133 (2014). https://doi.org/10.1002/embr.201338068
Buterin, V., et al.: A next-generation smart contract and decentralized application platform (2014)
Byrne, J.: We need to talk about systematic fraud. Nature 566(7742), 9 (2019). https://doi.org/10.1038/d41586-019-00439-9
Clark, P.B., Wilson, J.Q.: Incentive systems: a theory of organizations. Adm. Sci. Q. 6(2), 129 (1961). https://doi.org/10.2307/2390752
CoARA: Agreement on reforming research assessment (2022). https://coara.eu/app/uploads/2022/09/2022_07_19_rra_agreement_final.pdf. Accessed 25 July 2024
Coelho, F.C., Brandão, A.: Decentralising scientific publishing: can the blockchain improve science communication? Memórias do Instituto Oswaldo Cruz 114 (2019). https://doi.org/10.1590/0074-02760190257
Crotty, D.: The Latest “Crisis” - Is the Research Literature Overrun with ChatGPT- and LLM-generated Articles? (2024). https://scholarlykitchen.sspnet.org/2024/03/20/the-latest-crisis-is-the-research-literature-overrun-with-chatgpt-and-llm-generated-articles/. Accessed 27 Mar 2024
Daraghmi, E.Y., Helou, M.A., Daraghmi, Y.A.: A blockchain-based editorial management system. Secur. Commun. Netw. 2021, 1–17 (2021). https://doi.org/10.1155/2021/9927640
Declaration on Research Assessment (DORA): Guidance on the responsible use of quantitative indicators in research assessment (2024). https://doi.org/10.5281/ZENODO.11156568
DORA: San Francisco declaration on research assessment (2012). https://sfdora.org/read/. Accessed 25 July 2024
Ducrée, J., et al.: Unchaining collective intelligence for science, research, and technology development by blockchain-boosted community participation. Front. Blockchain 4 (2021). https://doi.org/10.3389/fbloc.2021.631648
Duh, E.S., et al.: Publish-and-flourish: Using blockchain platform to enable cooperative scholarly communication. Publications 7(2), 33 (2019). https://doi.org/10.3390/publications7020033
Elosua, J., Schjøll Brede, A., Ritola, M., Botev, V.: Iris.ai’s project Aiur: an open, community-governed AI Engine for Knowledge Validation (2018). https://projectaiur.com/wp-content/uploads/2018/05/ProjectAiur_whitepaper.pdf. Accessed 06 June 2023
Falagas, M.E., Alexiou, V.G.: The top-ten in journal impact factor manipulation. Archivum Immunologiae et Therapiae Experimentalis 56(4), 223–226 (2008). https://doi.org/10.1007/s00005-008-0024-5
Fanelli, D.: Do pressures to publish increase scientists’ bias? An empirical support from us states data. PLoS ONE 5(4), e10271 (2010). https://doi.org/10.1371/journal.pone.0010271
Ferdous Khan, M.F., Viet, P.D., Sakamura, K.: A blockchain-based incentive management system for educational organizations. In: 2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME). IEEE (2022). https://doi.org/10.1109/iceccme55909.2022.9988717
Ethereum Foundation: Solidity Documentation (2024). https://docs.soliditylang.org/. Accessed 18 Apr 2024
Gleicher, N.: Avoiding currently unavoidable conflicts of interest in medical publishing by transparent peer review. Reprod. BioMedicine Online 26(5), 411–415 (2013). https://doi.org/10.1016/j.rbmo.2013.01.015
Haak, L.L., Fenner, M., Paglione, L., Pentz, E., Ratner, H.: ORCID: a system to uniquely identify researchers. Learned Publishing 25(4), 259–264 (2012). https://doi.org/10.1087/20120404
Hadi, M.A.: Fake peer-review in research publication: revisiting research purpose and academic integrity. Int. J. Pharm. Pract. 24(5), 309–310 (2016). https://doi.org/10.1111/ijpp.12307
Haug, C.J.: Peer-review fraud – hacking the scientific publication process. N. Engl. J. Med. 373(25), 2393–2395 (2015). https://doi.org/10.1056/nejmp1512330
Hendrikx, F., Bubendorfer, K., Chard, R.: Reputation systems: a survey and taxonomy. J. Parallel Distrib. Comput. 75, 184–197 (2015). https://doi.org/10.1016/j.jpdc.2014.08.004
Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28(1), 75 (2004). https://doi.org/10.2307/25148625
Hirsch, J.E.: An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. 102(46), 16569–16572 (2005). https://doi.org/10.1073/pnas.0507655102
Ihle, C., Trautwein, D., Schubotz, M., Meuschke, N., Gipp, B.: Incentive mechanisms in peer-to-peer networks - a systematic literature review. ACM Comput. Surv. 55(14s), 1–69 (2023). https://doi.org/10.1145/3578581
Ioannidis, J.P.A.: Why most published research findings are false. PLoS Med. 2(8), e124 (2005). https://doi.org/10.1371/journal.pmed.0020124
Jan, Z., Third, A., Ibanez, L.D., Bachler, M., Simperl, E., Domingue, J.: ScienceMiles. In: Companion of the Web Conference 2018 - WWW 2018. ACM Press (2018). https://doi.org/10.1145/3184558.3191556
Janowicz, K., et al.: On the prospects of blockchain and distributed ledger technologies for open science and academic publishing. Semantic Web 9(5), 545–555 (2018). https://doi.org/10.3233/sw-180322
Belluz, J., Plumer, B., Resnick, B.: The 7 biggest problems facing science, according to 270 scientists (2016). https://www.vox.com/2016/7/14/12016710/science-challeges-research-funding-peer-review-process. Accessed 4 April 2024
Kim, M., Chung, J.: Sustainable growth and token economy design: the case of steemit. Sustainability 11(1), 167 (2018). https://doi.org/10.3390/su11010167
Kleinfercher, F., Vengadasalam, S., Lawton, J.: Bloxberg: The blockchain for science (2022). https://bloxberg.org/wp-content/uploads/2022/07/bloxberg_whitepaper_2.0.pdf. Accessed 07 June 2023
Lee, J., Moroso, M., Mackey, T.K.: Unblocking recognition: a token system for acknowledging academic contribution. Front. Blockchain 6 (2023). https://doi.org/10.3389/fbloc.2023.1136641
Medury, L., Ghosh, S.: Decentralized peer-review research solution. In: 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). IEEE (2021). https://doi.org/10.1109/icccnt51525.2021.9579650
Mehta, D.: Highlight negative results to improve science. Nature (2019). https://doi.org/10.1038/d41586-019-02960-3
Nissen, S.B., Magidson, T., Gross, K., Bergstrom, C.T.: Publication bias and the canonization of false facts. eLife 5 (2016). https://doi.org/10.7554/elife.21451
Nosek, B.A., Ebersole, C.R., DeHaven, A.C., Mellor, D.T.: The preregistration revolution. Proc. Natl. Acad. Sci. 115(11), 2600–2606 (2018). https://doi.org/10.1073/pnas.1708274114
Peters, D.P., Ceci, S.J.: Peer-review practices of psychological journals: the fate of published articles, submitted again. Behav. Brain Sci. 5(2), 187–195 (1982). https://doi.org/10.1017/s0140525x00011183
Peterson, J., Krug, J., Zoltu, M., Williams, A.K., Alexander, S.: Augur: a decentralized oracle and prediction market platform (2018). https://doi.org/10.13140/2.1.1431.4563
Polgreen, P.M., Nelson, F.D., Neumann, G.R., Weinstein, R.A.: Use of prediction markets to forecast infectious disease activity. Clin. Infect. Dis. 44(2), 272–279 (2007). https://doi.org/10.1086/510427
Qin, D., Wang, C., Jiang, Y.: RPchain: a blockchain-based academic social networking service for credible reputation building. In: Chen, S., Wang, H., Zhang, L.-J. (eds.) ICBC 2018. LNCS, vol. 10974, pp. 183–198. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94478-4_13
Rahut, S.K., Tanvir, R.A., Rahman, S., Akhter, S.: Scientific paper peer-reviewing system with blockchain, IPFS, and smart contract. In: Advances in Systems Analysis, Software Engineering, and High Performance Computing, pp. 189–221. IGI Global (2019). https://doi.org/10.4018/978-1-5225-9257-0.ch010
Roldan-Valadez, E., Salazar-Ruiz, S.Y., Ibarra-Contreras, R., Rios, C.: Current concepts on bibliometrics: a brief review about impact factor, eigenfactor score, citescore, scimago journal rank, source-normalised impact per paper, h-index, and alternative metrics. Irish J. Med. Sci. (1971 -) 188(3), 939-951 (2018). https://doi.org/10.1007/s11845-018-1936-5
Rosenthal, R.: The file drawer problem and tolerance for null results. Psychol. Bull. 86(3), 638–641 (1979). https://doi.org/10.1037/0033-2909.86.3.638
Ross-Hellauer, T.: What is open peer review? A systematic review. F1000Research 6, 588 (2017). https://doi.org/10.12688/f1000research.11369.2
Sabel, B.A., Knaack, E., Gigerenzer, G., Bilc, M.: Fake publications in biomedical science: red-flagging method indicates mass production (2023). https://doi.org/10.1101/2023.05.06.23289563
Sacco, D.F., Bruton, S.V., Brown, M., Medlin, M.M.: Skin in the game: personal accountability and journal peer review. J. Empir. Res. Hum. Res. Ethics 15(4), 330–338 (2020). https://doi.org/10.1177/1556264620922651
Saito, Y., Rose, J.A.: Reputation-based decentralized autonomous organization for the non-profit sector: leveraging blockchain to enhance good governance. Front. Blockchain 5 (2023). https://doi.org/10.3389/fbloc.2022.1083647
Schaufelbuhl, A., et al.: EUREKA – a minimal operational prototype of a blockchain-based rating and publishing system. In: 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). IEEE (2019). https://doi.org/10.1109/bloc.2019.8751445
Sicard, F.: Can decentralized science help tackle the deterioration in working conditions in academia? Front. Blockchain 5 (2022). https://doi.org/10.3389/fbloc.2022.1066294
Smaldino, P.E., McElreath, R.: The natural selection of bad science. Roy. Soc. Open Sci. 3(9), 160384 (2016). https://doi.org/10.1098/rsos.160384
Soergel, D., Saunders, A., McCallum, A.: Open scholarship and peer review: a time for experimentation (2013). https://api.semanticscholar.org/CorpusID:14548845
Spearpoint, M.: A proposed currency system for academic peer review payments using the blockchain technology. Publications 5(3), 19 (2017). https://doi.org/10.3390/publications5030019
Sterling, T.D.: Publication decisions and their possible effects on inferences drawn from tests of significance–or vice versa. J. Am. Stat. Assoc. 54(285), 30–34 (1959). https://doi.org/10.1080/01621459.1959.10501497
Tennant, J.P., et al.: A multi-disciplinary perspective on emergent and future innovations in peer review. F1000Research 6, 1151 (2017). https://doi.org/10.12688/f1000research.12037.3
Tenorio-Fornés, Á., Tirador, E.P., Sánchez-Ruiz, A.A., Hassan, S.: Decentralizing science: towards an interoperable open peer review ecosystem using blockchain. Inf. Process. Manag. 58(6), 102724 (2021). https://doi.org/10.1016/j.ipm.2021.102724
Trovò, B., Massari, N.: Ants-review: a privacy-oriented protocol for incentivized open peer reviews on ethereum. In: Balis, B., et al. (eds.) Euro-Par 2020. LNCS, vol. 12480, pp. 18–29. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71593-9_2
Van Noorden, R.: How big is science’s fake-paper problem? Nature 623(7987), 466–467 (2023). https://doi.org/10.1038/d41586-023-03464-x
Vercellini, P., Buggio, L., Viganò, P., Somigliana, E.: Peer review in medical journals: beyond quality of reports towards transparency and public scrutiny of the process. Eur. J. Internal Med. 31, 15–19 (2016). https://doi.org/10.1016/j.ejim.2016.04.014
Wang, T., Liew, S.C., Zhang, S.: PubChain: a decentralized open-access publication platform with participants incentivized by blockchain technology. In: 2020 International Symposium on Networks, Computers and Communications (ISNCC). IEEE (2020). https://doi.org/10.1109/isncc49221.2020.9297213
Ware, M.: Peer review: recent experience and future directions. New Rev. Inf. Netw. 16(1), 23–53 (2011). https://doi.org/10.1080/13614576.2011.566812
Weyl, E.G., Ohlhaver, P., Buterin, V.: Decentralized society: finding web3’s soul. SSRN Electron. J. (2022). https://doi.org/10.2139/ssrn.4105763
Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper 151, 1–32 (2014)
Wright, C.S.: Bitcoin: a peer-to-peer electronic cash system. SSRN Electron. J. (2008). https://doi.org/10.2139/ssrn.3440802
Yirka, B.: AI-generated disproportioned rat genitalia makes its way into peer-reviewed journal (2024). https://phys.org/news/2024-02-ai-generated-disproportioned-rat-genitalia.html. Accessed 27 Mar 2024
Zhou, Y., Wan, Z., Guan, Z.: Open-pub: a transparent yet privacy-preserving academic publication system based on blockchain. In: 2021 International Conference on Computer Communications and Networks (ICCCN). IEEE (2021). https://doi.org/10.1109/icccn52240.2021.9522316
Acknowledgements
Special thanks are extended to our colleague Andreas Marfurt who helped shape significant aspects of the presented solution through discussions and feedback. The authors thank the Federal Government, the Heads of Government of the Länder, as well as the Joint Science Conference (GWK), for their funding and support within the NFDI4Ing and NFDI4DataScience consortia. This work was partially funded by the German Research Foundation (DFG) - project numbers 442146713 and 460234259 and by the TIB - Leibniz Information Centre for Science and Technology.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bless, C., Denzler, A., Karras, O., Auer, S. (2024). A Reputation System for Scientific Contributions Based on a Token Economy. In: Antonacopoulos, A., et al. Linking Theory and Practice of Digital Libraries. TPDL 2024. Lecture Notes in Computer Science, vol 15177. Springer, Cham. https://doi.org/10.1007/978-3-031-72437-4_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-72437-4_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72436-7
Online ISBN: 978-3-031-72437-4
eBook Packages: Computer ScienceComputer Science (R0)