Skip to main content

Tracing the Retraction Cascade: Identifying Non-retracted but Potentially Retractable Articles

  • Conference paper
  • First Online:
Linking Theory and Practice of Digital Libraries (TPDL 2024)

Abstract

Scientific advancement is driven by new discoveries that often build upon previous knowledge - usually in good faith. Yet recently, there is an increasing number of either erroneous publications or even cases of scientific misconduct, as evidenced by rapidly growing numbers of retracted articles. Unfortunately, the problem is not only limited to retracted articles, but also with all articles citing them. Whenever an article is retracted, it raises concerns about the validity of its findings, rendering it an unreliable source for subsequent citations. Consequently, all articles citing a retracted article come under scrutiny. However, Re-evaluating all citing articles is a tedious, unrealistic, and unnecessary process because not all citations hold equal significance. Therefore, we aim to identify citation patterns that lead to cascading retractions. We investigate around 5000 articles citing retracted articles, including 953 cases of cascading retractions. Moreover, we propose a retraction-centric approach to rank articles that are close to retraction by measuring their similarities to bibliographically coupled retracted articles. This study presents an alternative to exhaustive re-examination, offering a more efficient means to scrutinize the articles that require re-evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.sparontologies.net/ontologies/c4o.

  2. 2.

    http://www.sparontologies.net/ontologies/fabio.

  3. 3.

    http://www.sparontologies.net/ontologies/cito.

  4. 4.

    https://pypi.org/project/beautifulsoup4/.

  5. 5.

    https://github.com/TPDL24/RetractionCascade.

  6. 6.

    The articles listed in Table 3 are identified based on textual similarity and citation analysis. This does not imply any subjective review of the content or validity of the articles. The authors do not claim that the listed articles are definitively flawed. Instead, this analysis aims to highlight potential areas for further investigation.

References

  1. Addepalli, A., Subin, K.A., Schneider, J.: Testing the keystone framework by analyzing positive citations to Wakefield’s 1998 Paper. In: Smits, M. (ed.) Information for a Better World: Shaping the Global Future. iConference 2022, vol. 13192, pp. 79–88. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-96957-8_9

  2. Aljuaid, H., Iftikhar, R., Ahmad, S., Asif, M., Afzal, M.T.: Important citation identification using sentiment analysis of in-text citations. Telematics Inform. 56, 101492 (2021). https://doi.org/10.1016/j.tele.2020.101492

  3. Bar-Ilan, J., Halevi, G.: Post retraction citations in context: a case study. Scientometrics 113(1), 547–565 (2017). https://doi.org/10.1007/s11948-015-9680-y

    Article  Google Scholar 

  4. Bolland, M.J., Grey, A., Avenell, A.: Citation of retracted publications: a challenging problem. Accountability Res. 29(1), 18–25 (2022). https://doi.org/10.1080/08989621.2021.1886933

  5. Candal-Pedreira, C., Ruano-Ravina, A., Fernández, E., Ramos, J., Campos-Varela, I., Pérez-Ríos, M.: Does retraction after misconduct have an impact on citations? a pre-post study. BMJ Glob. Health 5(11), e003719 (2020). https://doi.org/10.1136/bmjgh-2020-003719

    Article  Google Scholar 

  6. Ciancarini, P., Di Iorio, A., Nuzzolese, A.G., Peroni, S., Vitali, F.: Evaluating citation functions in CiTO: cognitive issues. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 580–594. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07443-6_39

    Chapter  Google Scholar 

  7. Cohan, A., Feldman, S., Beltagy, I., Downey, D., Weld, D.S.: SPECTER: document-level representation learning using citation-informed transformers. arXiv preprint arXiv:2004.07180 (2020)

  8. Dubois, J.M., et al.: Understanding research misconduct: a comparative analysis of 120 cases of professional wrongdoing. Accountability Res. 20(5-6), 320–338 (2013). https://doi.org/10.1080/08989621.2013.822248

  9. Fang, F.C., Steen, R.G., Casadevall, A.: Misconduct accounts for the majority of retracted scientific publications. Proc. Natl. Acad. Sci. 109(42), 17028–17033 (2012). https://doi.org/10.1073/pnas.1212247109

    Article  Google Scholar 

  10. Feng, L., Yuan, J., Yang, L.: An observation framework for retracted publications in multiple dimensions. Scientometrics 125(2), 1445–1457 (2020). https://doi.org/10.1007/s11192-020-03702-3

    Article  Google Scholar 

  11. Fu, Y., Schneider, J.: Towards knowledge maintenance in scientific digital libraries with the keystone framework. In: Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020, pp. 217–226 (2020). https://doi.org/10.1145/3383583.3398514

  12. Fu, Y., Schneider, J., Blake, C.: Finding keystone citations for constructing validity chains among research papers. In: Companion Proceedings of the Web Conference 2021, pp. 451–455 (2021). https://doi.org/10.1145/3442442.3451368

  13. Guo, Z., Schlichtkrull, M., Vlachos, A.: A survey on automated fact-checking. Trans. Assoc. Comput. Linguist. 10, 178–206 (2022). https://doi.org/10.1162/tacl_a_00454

  14. Handley-Miner, I.J., et al.: The intentions of information sources can affect what information people think qualifies as true. Sci. Rep. 13(1), 7718 (2023). https://doi.org/10.1038/s41598-023-34806-4

    Article  Google Scholar 

  15. Hassan, S.U., Akram, A., Haddawy, P.: Identifying important citations using contextual information from full text. In: 2017 ACM/IEEE Joint Conference on Digital Libraries (JCDL), pp. 1–8. IEEE (2017). https://doi.org/10.1109/JCDL.2017.7991558

  16. Hinz, M., Stein, A., Cole, T.: RETRACTED ARTICLE: management of L-dopa overdose in the competitive inhibition state. Drug Healthc. Patient Saf. 6, 93–99 (2014). https://doi.org/10.2147/DHPS.S67328

  17. Hinz, M., Stein, A., Cole, T.: Management of L-dopa overdose in the competitive inhibition state. Drug Healthc. Patient Saf. 12, 271–272 (2020). https://doi.org/10.2147/DHPS.S296332

  18. Hinz, M., Stein, A., Cole, T., McDougall, B., Westaway, M.: Retracted article: Parkinson’s disease managing reversible neurodegeneration. Neuropsychiatric Dis. Treat. 12, 763–775 (2016). https://doi.org/10.2147/NDT.S98367

  19. Hinz, M., Stein, A., Cole, T., McDougall, B., Westaway, M.: Parkinson’s disease managing reversible neurodegeneration. Neuropsychiatr. Dis. Treat. 16, 3125–3126 (2020). https://doi.org/10.2147/NDT.S296333

    Article  Google Scholar 

  20. Hsiao, T.K., Torvik, V.I.: OpCitance: citation contexts identified from the PubMed central open access articles. Sci. Data 10(1), 243 (2023). https://doi.org/10.1038/s41597-023-02134-x

    Article  Google Scholar 

  21. Keiser, M.J., et al.: Predicting new molecular targets for known drugs. Nature 462(7270), 175–181 (2009). https://doi.org/10.1038/nature08506

    Article  Google Scholar 

  22. Kühberger, A., Streit, D., Scherndl, T.: Self-correction in science: the effect of retraction on the frequency of citations. PLoS ONE 17(12), e0277814 (2022). https://doi.org/10.1371/journal.pone.0277814

    Article  Google Scholar 

  23. Li, M., Shen, Z.: Science map of academic misconduct. Innovation 5(2), 100593 (2024). https://doi.org/10.1016/j.xinn.2024.100593

    Article  MathSciNet  Google Scholar 

  24. Qayyum, F., Afzal, M.T.: Identification of important citations by exploiting research articles’ metadata and cue-terms from content. Scientometrics 118, 21–43 (2019). https://doi.org/10.1007/s11192-018-2961-x

  25. Schneider, J., Ye, D., Hill, A.M., Whitehorn, A.S.: Continued post-retraction citation of a fraudulent clinical trial report, 11 years after it was retracted for falsifying data. Scientometrics 125, 2877–2913 (2020). https://doi.org/10.1007/s11192-020-03631-1

  26. Sharma, K.: Team size and retracted citations reveal the patterns of retractions from 1981 to 2020. Scientometrics 126(10), 8363–8374 (2021). https://doi.org/10.1007/s11192-021-04125-4

    Article  Google Scholar 

  27. Shema, H., Hahn, O., Mazarakis, A., Peters, I.: Retractions from altmetric and bibliometric perspectives. Inf. Wiss. Prax. 70(2–3), 98–110 (2019). https://doi.org/10.1515/iwp-2019-2006

    Article  Google Scholar 

  28. Smith, R.: Investigating the previous studies of a fraudulent author. BMJ 331(7511), 288–291 (2005). https://doi.org/10.1136/bmj.331.7511.288

    Article  Google Scholar 

  29. Sudhakar, A., et al.: Human \(\alpha \)1 type IV collagen NC1 domain exhibits distinct antiangiogenic activity mediated by \(\alpha \)1\(\beta \)1 integrin. J. Clin. Investig. 115(10), 2801–2810 (2005). https://doi.org/10.1172/JCI24813

    Article  Google Scholar 

  30. Sudhakar, A., et al.: Human \(\alpha \)1 type IV collagen NC1 domain exhibits distinct antiangiogenic activity mediated by \(\alpha \)1\(\beta \)1 integrin. J. Clin. Invest. 130(1), 552 (2020). https://doi.org/10.1172/JCI135305

  31. Te, S., Barhoumi, A., Lentschat, M., Bordignon, F., Labbé, C., Portet, F.: Citation context classification: critical vs non-critical. In: Proceedings of the Third Workshop on Scholarly Document Processing, pp. 49–53 (2022)

    Google Scholar 

  32. Thelwall, M.: Should citations be counted separately from each originating section? J. Informet. 13(2), 658–678 (2019). https://doi.org/10.1016/j.joi.2019.03.009

    Article  Google Scholar 

  33. Usman, M., Balke, W.T.: On retraction cascade? Citation intention analysis as a quality control mechanism in digital libraries. In: Alonso, O., Cousijn, H., Silvello, G., Marrero, M., Teixeira Lopes, C., Marchesin, S. (eds.) Linking Theory and Practice of Digital Libraries, pp. 117–131. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43849-3_11

    Chapter  Google Scholar 

  34. Wakefield, A.J., et al.: RETRACTED: ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children. Lancet 351(9103), 637–641 (1998). https://doi.org/10.1016/S0140-6736(97)11096-0

    Article  Google Scholar 

  35. Wan, X., Liu, F.: Are all literature citations equally important? Automatic citation strength estimation and its applications. J. Am. Soc. Inf. Sci. 65(9), 1929–1938 (2014). https://doi.org/10.1002/asi.23083

    Article  Google Scholar 

  36. Wang, M., Zhang, J., Jiao, S., Zhang, X., Zhu, N., Chen, G.: Important citation identification by exploiting the syntactic and contextual information of citations. Scientometrics 125, 2109–2129 (2020). https://doi.org/10.1007/s1192-020-03677-1

    Article  Google Scholar 

  37. Williams, P., Wager, E.: Exploring why and how journal editors retract articles: findings from a qualitative study. Sci. Eng. Ethics 19(1), 1–11 (2013). https://doi.org/10.1007/s11948-011-9292-0

    Article  Google Scholar 

  38. Zhang, C., Ding, K., Liu, Z.: Informetric analysis on the international retracted publication based on the web of science database. In: 5th Annual International Conference on Social Science and Contemporary Humanity Development (SSCHD 2019), pp. 472–481. Atlantis Press (2019). https://doi.org/10.2991/sschd-19.2019.100

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Grant No. Gepris 267140244 for the PubPharm - Specialized Information Service for Pharmacy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Usman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Usman, M., Balke, WT. (2024). Tracing the Retraction Cascade: Identifying Non-retracted but Potentially Retractable Articles. In: Antonacopoulos, A., et al. Linking Theory and Practice of Digital Libraries. TPDL 2024. Lecture Notes in Computer Science, vol 15177. Springer, Cham. https://doi.org/10.1007/978-3-031-72437-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72437-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72436-7

  • Online ISBN: 978-3-031-72437-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics