Abstract
This paper introduces an innovative analytical method for visualising research libraries, overcoming the limitations of the assumptions made by their classification systems. The approach combines user loan data with deep mapping techniques to graphically display usage patterns and thematic clusters. Dimensionality reduction is used to visualise the catalogue by book loans, and prompt engineering with large language models is used to describe loan clusters with detailed summaries and titles. This approach was applied to the library collection owned by Bibliotheca Hertziana, a renowned research institute for art history based in Rome. The final output was assessed by a group of experts through interviews supported by an atlas providing statistical information on clusters. This yielded promising results towards a more general framework for visually mapping textual collections and capturing their transformation and usage from an interdisciplinary perspective.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
More information about Bibliotheca Hertziana at http://www.biblhertz.it/.
- 2.
Details of the questionnaire, answers, and code repository can be found in [7].
References
Bibliotheca Hertziana: Italy in a Global Context (2018). https://www.biblhertz.it/en/dept-weddigen/global-context
Bowker, G.C., Star, S.L.: Sorting Things Out: Classification and Its Consequences. Inside Technology. MIT Press, Cambridge (2008). 1. paperback ed., 8. print edn
Boyack, K.W., Klavans, R., Börner, K.: Mapping the backbone of science. Scientometrics 64(3), 351–374 (2005). https://doi.org/10.1007/s11192-005-0255-6. http://link.springer.com/10.1007/s11192-005-0255-6
Börner, K.: Atlas of Knowledge: Anyone Can Map. MIT Press, Cambridge (2015)
Börner, K., Chen, C., Boyack, K.W.: Visualizing knowledge domains. Ann. Rev. Inf. Sci. Technol. 37(1), 179–255 (2003). https://doi.org/10.1002/aris.1440370106. https://onlinelibrary.wiley.com/doi/abs/10.1002/aris.1440370106
Campello, R.J.G.B., Moulavi, D., Sander, J.: Density-based clustering based on hierarchical density estimates. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013. LNCS (LNAI), vol. 7819, pp. 160–172. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37456-2_14
Casey, H.L.: Mapping Bibliotheca Hertziana. Master’s thesis, EPFL, April 2024. https://doi.org/10.5281/ZENODO.11056129. https://zenodo.org/doi/10.5281/zenodo.11056129
Chari, T., Pachter, L.: The specious art of single-cell genomics. PLOS Comput. Biol. 19(8), e1011288 (2023). https://doi.org/10.1371/journal.pcbi.1011288. https://dx.plos.org/10.1371/journal.pcbi.1011288
Chen, C.: Science mapping: a systematic review of the literature. J. Data Inf. Sci. 2(2), 1–40 (2017). https://doi.org/10.1515/jdis-2017-0006. https://www.sciendo.com/article/10.1515/jdis-2017-0006
Glinka, K., Pietsch, C., Dilba, C., Dörk, M.: Linking structure, texture and context in a visualization of historical drawings by Frederick William IV (1795-1861). Int. J. Digit. Art History (2) (2016). https://doi.org/10.11588/dah.2016.2.33530. https://journals.ub.uni-heidelberg.de/index.php/dah/article/view/33530, number: 2
Lima, M.: Visual Complexity: Mapping Patterns of Information. Princeton Architectural Press, New York (2011)
Mauri, M., Elli, T., Caviglia, G., Uboldi, G., Azzi, M.: RAWGraphs: a visualisation platform to create open outputs. In: Proceedings of the 12th Biannual Conference on Italian SIGCHI Chapter, Cagliari, Italy, pp. 1–5. ACM, September 2017. https://doi.org/10.1145/3125571.3125585. https://dl.acm.org/doi/10.1145/3125571.3125585
McInnes, L., Healy, J., Astels, S.: How HDBSCAN Works — HDBSCAN 0.8.1 documentation (2016). https://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html
McInnes, L., Healy, J., Astels, S.: HDBSCAN: hierarchical density based clustering. J. Open Source Softw. 2(11), 205 (2017). https://doi.org/10.21105/joss.00205. https://joss.theoj.org/papers/10.21105/joss.00205
McInnes, L., Healy, J., Melville, J.: UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction (2018). https://doi.org/10.48550/ARXIV.1802.03426. https://arxiv.org/abs/1802.03426. Publisher: arXiv Version Number: 3
NLTK Project: NLTK: Natural Language Toolkit (2023). https://www.nltk.org/
Noichl, M.: How localized are computational templates? A machine learning approach. Synthese 201(3), 107 (2023). https://doi.org/10.1007/s11229-023-04057-x
OpenAI: OpenAI API (2020). https://openai.com/blog/openai-api
Petrovich, E.: Science mapping. Encyclopedia of knowledge organization (2020). https://www.isko.org/cyclo/science_mapping
Picca, D., Schnyder, A., Kostina, E., Adamou, A., Rodighiero, D., Schnapp, J.: Orchestrating cultural heritage: exploring the automated analysis and organization of Charles S. Peirce’s PAP manuscript. In: Proceedings of the 34th ACM Conference on Hypertext and Social Media, Rome, Italy, pp. 1–4. ACM, September 2023. https://doi.org/10.1145/3603163.3609066. https://dl.acm.org/doi/10.1145/3603163.3609066
Pietsch, C.: cpietsch/smb-vis (2020). https://github.com/cpietsch/smb-vis. Accessed 29 Aug 2020 T17:04:11Z
RNDR: Oracle (2022). https://rndr.studio/projects/oracle
Rodighiero, D.: Mapping Affinities: Democratizing Data Visualization. Métis Presses (2021). https://dash.harvard.edu/handle/1/37368046. Accepted 28 June 2021 T15:35:34Z
Rodighiero, D., Cellard, L.: Self-recognition in data visualization: how individuals see themselves in visual representations. EspacesTemps.net: Electron. J. Humanit. Soc. Sci. (2019). https://doi.org/10.26151/espacestemps.net-wztp-cc46. https://www.espacestemps.net/en/articles/self-recognition-in-data-visualization/
Schmidt, B.: Stable random projection: lightweight, general-purpose dimensionality reduction for digitized libraries. J. Cult. Anal. (2018). https://doi.org/10.22148/16.025
Schnapp, J.T., Battles, M.: The Library Beyond the Book. metaLABprojects. Harvard University Press, Cambridge (2014)
Stafford, B.M.: Reconceiving the Warburg library as a working museum of the mind. Common Knowl. 18(1), 180–187 (2012). https://doi.org/10/fx8pk4
Stanislav, G.: pdfkit: Wkhtmltopdf python wrapper to convert HTML to PDF using the webkit rendering engine and QT (2021)
Svenonius, E.: The Intellectual Foundation of Information Organization. Digital Libraries and Electronic Publishing. MIT Press, Cambridge (2000)
The Matplotlib Development Team: Matplotlib: Visualization with Python, April 2024. https://doi.org/10.5281/ZENODO.592536. https://zenodo.org/doi/10.5281/zenodo.592536
Wilders, C.: Predicting the role of library bookshelves in 2025. J. Acad. Libr. 43(5), 384–391 (2017). https://doi.org/10.1016/j.acalib.2017.06.019. https://linkinghub.elsevier.com/retrieve/pii/S0099133317301234
Acknowledgments
This research has been supported by Bibliotheca Hertziana - Max Planck Institute for Art History under project number BH-P-23-40.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Casey, H.L., Adamou, A., Rodighiero, D. (2024). Mapping Techniques for an Automated Library Classification: The Case Study of Library Loans at Bibliotheca Hertziana. In: Antonacopoulos, A., et al. Linking Theory and Practice of Digital Libraries. TPDL 2024. Lecture Notes in Computer Science, vol 15177. Springer, Cham. https://doi.org/10.1007/978-3-031-72437-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-72437-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72436-7
Online ISBN: 978-3-031-72437-4
eBook Packages: Computer ScienceComputer Science (R0)