Skip to main content

Mapping Techniques for an Automated Library Classification: The Case Study of Library Loans at Bibliotheca Hertziana

  • Conference paper
  • First Online:
Linking Theory and Practice of Digital Libraries (TPDL 2024)

Abstract

This paper introduces an innovative analytical method for visualising research libraries, overcoming the limitations of the assumptions made by their classification systems. The approach combines user loan data with deep mapping techniques to graphically display usage patterns and thematic clusters. Dimensionality reduction is used to visualise the catalogue by book loans, and prompt engineering with large language models is used to describe loan clusters with detailed summaries and titles. This approach was applied to the library collection owned by Bibliotheca Hertziana, a renowned research institute for art history based in Rome. The final output was assessed by a group of experts through interviews supported by an atlas providing statistical information on clusters. This yielded promising results towards a more general framework for visually mapping textual collections and capturing their transformation and usage from an interdisciplinary perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    More information about Bibliotheca Hertziana at http://www.biblhertz.it/.

  2. 2.

    Details of the questionnaire, answers, and code repository can be found in [7].

References

  1. Bibliotheca Hertziana: Italy in a Global Context (2018). https://www.biblhertz.it/en/dept-weddigen/global-context

  2. Bowker, G.C., Star, S.L.: Sorting Things Out: Classification and Its Consequences. Inside Technology. MIT Press, Cambridge (2008). 1. paperback ed., 8. print edn

    Google Scholar 

  3. Boyack, K.W., Klavans, R., Börner, K.: Mapping the backbone of science. Scientometrics 64(3), 351–374 (2005). https://doi.org/10.1007/s11192-005-0255-6. http://link.springer.com/10.1007/s11192-005-0255-6

  4. Börner, K.: Atlas of Knowledge: Anyone Can Map. MIT Press, Cambridge (2015)

    Google Scholar 

  5. Börner, K., Chen, C., Boyack, K.W.: Visualizing knowledge domains. Ann. Rev. Inf. Sci. Technol. 37(1), 179–255 (2003). https://doi.org/10.1002/aris.1440370106. https://onlinelibrary.wiley.com/doi/abs/10.1002/aris.1440370106

  6. Campello, R.J.G.B., Moulavi, D., Sander, J.: Density-based clustering based on hierarchical density estimates. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013. LNCS (LNAI), vol. 7819, pp. 160–172. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37456-2_14

    Chapter  Google Scholar 

  7. Casey, H.L.: Mapping Bibliotheca Hertziana. Master’s thesis, EPFL, April 2024. https://doi.org/10.5281/ZENODO.11056129. https://zenodo.org/doi/10.5281/zenodo.11056129

  8. Chari, T., Pachter, L.: The specious art of single-cell genomics. PLOS Comput. Biol. 19(8), e1011288 (2023). https://doi.org/10.1371/journal.pcbi.1011288. https://dx.plos.org/10.1371/journal.pcbi.1011288

  9. Chen, C.: Science mapping: a systematic review of the literature. J. Data Inf. Sci. 2(2), 1–40 (2017). https://doi.org/10.1515/jdis-2017-0006. https://www.sciendo.com/article/10.1515/jdis-2017-0006

  10. Glinka, K., Pietsch, C., Dilba, C., Dörk, M.: Linking structure, texture and context in a visualization of historical drawings by Frederick William IV (1795-1861). Int. J. Digit. Art History (2) (2016). https://doi.org/10.11588/dah.2016.2.33530. https://journals.ub.uni-heidelberg.de/index.php/dah/article/view/33530, number: 2

  11. Lima, M.: Visual Complexity: Mapping Patterns of Information. Princeton Architectural Press, New York (2011)

    Google Scholar 

  12. Mauri, M., Elli, T., Caviglia, G., Uboldi, G., Azzi, M.: RAWGraphs: a visualisation platform to create open outputs. In: Proceedings of the 12th Biannual Conference on Italian SIGCHI Chapter, Cagliari, Italy, pp. 1–5. ACM, September 2017. https://doi.org/10.1145/3125571.3125585. https://dl.acm.org/doi/10.1145/3125571.3125585

  13. McInnes, L., Healy, J., Astels, S.: How HDBSCAN Works — HDBSCAN 0.8.1 documentation (2016). https://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html

  14. McInnes, L., Healy, J., Astels, S.: HDBSCAN: hierarchical density based clustering. J. Open Source Softw. 2(11), 205 (2017). https://doi.org/10.21105/joss.00205. https://joss.theoj.org/papers/10.21105/joss.00205

  15. McInnes, L., Healy, J., Melville, J.: UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction (2018). https://doi.org/10.48550/ARXIV.1802.03426. https://arxiv.org/abs/1802.03426. Publisher: arXiv Version Number: 3

  16. NLTK Project: NLTK: Natural Language Toolkit (2023). https://www.nltk.org/

  17. Noichl, M.: How localized are computational templates? A machine learning approach. Synthese 201(3), 107 (2023). https://doi.org/10.1007/s11229-023-04057-x

  18. OpenAI: OpenAI API (2020). https://openai.com/blog/openai-api

  19. Petrovich, E.: Science mapping. Encyclopedia of knowledge organization (2020). https://www.isko.org/cyclo/science_mapping

  20. Picca, D., Schnyder, A., Kostina, E., Adamou, A., Rodighiero, D., Schnapp, J.: Orchestrating cultural heritage: exploring the automated analysis and organization of Charles S. Peirce’s PAP manuscript. In: Proceedings of the 34th ACM Conference on Hypertext and Social Media, Rome, Italy, pp. 1–4. ACM, September 2023. https://doi.org/10.1145/3603163.3609066. https://dl.acm.org/doi/10.1145/3603163.3609066

  21. Pietsch, C.: cpietsch/smb-vis (2020). https://github.com/cpietsch/smb-vis. Accessed 29 Aug 2020 T17:04:11Z

  22. RNDR: Oracle (2022). https://rndr.studio/projects/oracle

  23. Rodighiero, D.: Mapping Affinities: Democratizing Data Visualization. Métis Presses (2021). https://dash.harvard.edu/handle/1/37368046. Accepted 28 June 2021 T15:35:34Z

  24. Rodighiero, D., Cellard, L.: Self-recognition in data visualization: how individuals see themselves in visual representations. EspacesTemps.net: Electron. J. Humanit. Soc. Sci. (2019). https://doi.org/10.26151/espacestemps.net-wztp-cc46. https://www.espacestemps.net/en/articles/self-recognition-in-data-visualization/

  25. Schmidt, B.: Stable random projection: lightweight, general-purpose dimensionality reduction for digitized libraries. J. Cult. Anal. (2018). https://doi.org/10.22148/16.025

  26. Schnapp, J.T., Battles, M.: The Library Beyond the Book. metaLABprojects. Harvard University Press, Cambridge (2014)

    Google Scholar 

  27. Stafford, B.M.: Reconceiving the Warburg library as a working museum of the mind. Common Knowl. 18(1), 180–187 (2012). https://doi.org/10/fx8pk4

  28. Stanislav, G.: pdfkit: Wkhtmltopdf python wrapper to convert HTML to PDF using the webkit rendering engine and QT (2021)

    Google Scholar 

  29. Svenonius, E.: The Intellectual Foundation of Information Organization. Digital Libraries and Electronic Publishing. MIT Press, Cambridge (2000)

    Google Scholar 

  30. The Matplotlib Development Team: Matplotlib: Visualization with Python, April 2024. https://doi.org/10.5281/ZENODO.592536. https://zenodo.org/doi/10.5281/zenodo.592536

  31. Wilders, C.: Predicting the role of library bookshelves in 2025. J. Acad. Libr. 43(5), 384–391 (2017). https://doi.org/10.1016/j.acalib.2017.06.019. https://linkinghub.elsevier.com/retrieve/pii/S0099133317301234

Download references

Acknowledgments

This research has been supported by Bibliotheca Hertziana - Max Planck Institute for Art History under project number BH-P-23-40.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannah Laureen Casey .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Casey, H.L., Adamou, A., Rodighiero, D. (2024). Mapping Techniques for an Automated Library Classification: The Case Study of Library Loans at Bibliotheca Hertziana. In: Antonacopoulos, A., et al. Linking Theory and Practice of Digital Libraries. TPDL 2024. Lecture Notes in Computer Science, vol 15177. Springer, Cham. https://doi.org/10.1007/978-3-031-72437-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72437-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72436-7

  • Online ISBN: 978-3-031-72437-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics