Skip to main content

Bioinspired Navigation Based on Distributed Sensing in the Leech Using Dynamic Neural Fields

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2024)

Abstract

Water waves can help aquatic animals to distinguish between predators and prey. Previous studies suggest that leech sensory receptors have evolved to respond to relevant wave frequencies. While these studies examined how sensory information affects animal behavior, the underlying neural processing remains unclear. In this study, we present a model that mimics leech goal seeking behavior using an agent-based simulation. Our model uses neural fields, a Winner-Take-All framework from computational neuroscience, to process sensory data. A simulated leech was placed in a simulated environment containing artificial water waves. A distributed sensor array around the agent detected the wave motion, which was then processed via a computational neuroscience approach called a neural field. This sensory information was used to compute motion directions. Modeled behavioral data aligned with data from previous animal experiments. Our model can complement animal experiments by allowing us to pose questions that would be challenging to address directly in an animal. Also, our results may provide insights into novel processing approaches that can be leveraged by man-made sensory systems to process data from multiple sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Data Accessibility

Code is provided as electronic supplementary material (please note that this script may take several hours to run): https://github.com/qbeslab/LeechNavigationNeuralFields.

References

  1. Zimmerman, A., Bai, L., Ginty, D.D.: The gentle touch receptors of mammalian skin. Science 346(6212), 950ā€“954 (2014)

    Article  Google Scholar 

  2. Zill, S., Schmitz, J., BĆ¼schges, A.: Load sensing and control of posture and locomotion. Arthropod Struct. Dev. 33, 273ā€“286 (2004)

    Article  Google Scholar 

  3. Walker, M.: A model for encoding of magnetic field intensity by magnetite-based magnetoreceptor cells. J. Theor. Biol. 250, 85ā€“91 (2007)

    Article  Google Scholar 

  4. Taylor, B.K.: Validating a model for detecting magnetic field intensity using dynamic neural fields. J. Theor. Biol. 408, 53ā€“65 (2016)

    Article  Google Scholar 

  5. Hochner, B.: An embodied view of octopus neurobiology. Curr. Biol. 22(20), R887-92 (2012)

    Article  Google Scholar 

  6. McDonnell, M.D., et al.: Engineering intelligent electronic systems based on computational neuroscience. Proc. IEEE 102(5), 646ā€“651 (2014)

    Article  Google Scholar 

  7. Lockery, S.R., Kristan, W.B.: Distributed processing of sensory information in the leech. I. Input- output relations of the local bending reflex. J. Neurosci. 10(6), 1811ā€“1815 (1990)

    Article  Google Scholar 

  8. Kristan, W.B., Calabrese, R.L., Friesen, W.O.: Neural control of leech behavior. Prog. Neurobiol. 76, 279ā€“327 (2005)

    Article  Google Scholar 

  9. Wagenaar, D.A.: A classic model animal in the 21st century: recent lessons from the leech nervous system. J. Exp. Biol. 218, 3353ā€“3359 (2015)

    Article  Google Scholar 

  10. Moshtagh-Khorasani, M., Miller, E.W., Torre, V.: The spontaneous electrical activity of neurons in leech ganglia. Physiol. Rep. 1, e00089 (2013)

    Article  Google Scholar 

  11. Wilson, H.: Spikes, Decisions, and Actions: the Dynamical Foundations of Neuroscience. Oxford University Press, New York (1999)

    Google Scholar 

  12. Harley, C.M., Cienfuegos, J., Wagenaar, D.A.: Developmentally regulated multisensory integration for prey localization in the medicinal leech. J. Exp. Biol. 214, 3801ā€“3807 (2011)

    Article  Google Scholar 

  13. Kutschera, U., Elliott, J.: The European medicinal leech Hirudo medicinalis L.: morphology and occurrence of an endangered species. Zoosyst. Evol. 90(2), 2 (2014)

    Article  Google Scholar 

  14. Harley, C.M., Wagenaar, D.A.: Scanning behavior in the medicinal leech Hirudo verbana. PLoS One 9(1), e86120 (2014)

    Article  Google Scholar 

  15. Jensen, K.K.: Light-dependent orientation responses in animals can be explained by a model of compass cue integration. J. Theor. Biol. 262, 129ā€“141 (2010)

    Article  Google Scholar 

  16. Taylor, B.K., Johnsen, S., Lohmann, K.J.: Detection of magnetic field properties using distributed sensing: a computational neuroscience approach. Bioinspir. Biomim. 12, 3 (2017)

    Article  Google Scholar 

  17. Hunt, A., et al.: Development and training of a neural controller for hind leg walking in a dog robot. Front. Neurorobot. 11, 18 (2017)

    Article  Google Scholar 

  18. Zhang, K.: Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. J. Neurosci. 16(6), 2112ā€“2126 (1996)

    Article  Google Scholar 

  19. Coombes, S., et al.: Neural Fields: Theory and Applications. Springer-Verlag, Berlin Heidelberg (2014)

    Book  Google Scholar 

  20. Kasabov, N.K.: Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence. Springer-Verlag, Berlin (2019)

    Book  Google Scholar 

  21. Nichols, S.T., Kekl, C.E., Taylor, B.K., Harley, C.: Bioinspired navigation based on distributed sensing in the leech. In: Proceedings of Living Machines, pp. 275ā€“287 (2020)

    Google Scholar 

  22. Derosa, Y.S., Friesen, W.O.: Morphology of leech sensila: observations with the scanning electron microscope. Biol. Bull. 160, 383ā€“393 (1981)

    Article  Google Scholar 

  23. Amari, S.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27, 77ā€“87 (1977)

    Article  MathSciNet  Google Scholar 

  24. Nichols, S.: Bioinspired Navigation Based on Distributed Sensing in the Leech Using Dynamic Neural Fields. Senior Honors Thesis, University of North Carolina, Chapel Hill. https://doi.org/10.17615/6yz9-6d68

  25. Haberman, R.: Applied Partial Differential Equations: with Fourier Series and Bounary Value Problems. Prentice Hall, New Jersey (2004)

    Google Scholar 

  26. Plawsky, J.L.: Transport Phenomena Fundamentals. Taylor and Francis (2001)

    Google Scholar 

  27. Dingemans, M.W.: Water Wave Propagation Over Uneven Bottoms: Linear Wave Propagation (Vol 13). World Scientific (1997)

    Book  Google Scholar 

  28. Craik, A.D.D.: Wave Interactions and Fluid Flows. Cambridge University Press (1988)

    Google Scholar 

  29. Piephoff, F., Taylor, B.K., Kehl, C.E., Mota, B., Harley, C.M.: Biomechanics of transduction by mechanosensory cilia for prey detection in aquatic organisms. J. Theor. Biol. 583, 111782 (2024)

    Article  MathSciNet  Google Scholar 

  30. Izhikevich, E.M.: Dynamical Systems in Neuroscience. MIT Press (2010)

    Google Scholar 

  31. Lehmkuhl, A.M., Muthusamy, A., Wagenaar, D.A.: Responses to mechanically and visually cued water waves in the nervous system of the medicinal leech. J. Exp. Biol. 221(4), jeb171728 (2018)

    Article  Google Scholar 

  32. Webb, B.: Robots with insect brains. Science 368(6488), 244ā€“245 (2020)

    Article  Google Scholar 

  33. Nichols, S., Havens, L., Taylor, B.: Sensation to navigation: a computational neuroscience approach to magnetic field navigation. J. Comp. Physiol. A 208(1), 167ā€“176 (2022)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a grant from the Air Force Office of Scientific Research (FA9550-20-1-0399). B. Mota is supported by FundaĆ§Ć£o Serrapilheira Institute (grant Serra-1709-16981) and CNPq (PQ 2017 312837/2017-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian K. Taylor .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

We declare we have no competing interests.

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nichols, S.T., Gill, J.P., Mota, B., Harley, C.M., Taylor, B.K. (2025). Bioinspired Navigation Based on Distributed Sensing in the Leech Using Dynamic Neural Fields. In: Szczecinski, N.S., Webster-Wood, V., Tresch, M., Nourse, W.R.P., Mura, A., Quinn, R.D. (eds) Biomimetic and Biohybrid Systems. Living Machines 2024. Lecture Notes in Computer Science(), vol 14930. Springer, Cham. https://doi.org/10.1007/978-3-031-72597-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72597-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72596-8

  • Online ISBN: 978-3-031-72597-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics