Skip to main content

Vertical Closure Constraint for Self-replicating Machines

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14930))

Included in the following conference series:

Abstract

In examining the implementation of a physical self-replicating machine on the Moon, we explore the implications of vertical closure as a constraint on the design of such. We describe the design of this self-replicating machine from its demandite list of in-situ sourced materials, a lunar industrial ecology to extract those materials, electrochemical and other chemical processes to purify desired materials and additive manufacturing methods for 3D printing the major components of the self-replicator. We then turn to the vertical closure issue defined through metrics based on resource-returned-on-investment, i.e. physical output/input ratios, and how this drives the design of the self-replicator. Several biological phenomena emerge suggesting that physical self-replicating machines can provide insights into biological life, terrestrial or extraterrestrial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alpi, A., et al.: Plant neurobiology: no brain, no gain? Trends in Plant Sciences 12(4), 135–136 (2007)

    Article  Google Scholar 

  • Bardi, U., Lavacchi, A., Yaxley, L.: Modelling EROEI and net energy in the exploitation of non-renewable resources. Ecol. Model. 223, 54–58 (2011)

    Article  Google Scholar 

  • Benenson, Y., Paz-Elizur, T., Adar, R., Kelnan, E., Livneh, Z., Shapiro, E.: Programmable and autonomous computing machine made of biomolecules. Nature 414(6862), 430–434 (2001). https://doi.org/10.1038/35106533

    Article  Google Scholar 

  • Bich, L., Bechtel, W.: Control mechanisms: explaining the integration and versatility of biological organisms. Adaptive Behaviour 30(5), 389–407 (2022)

    Article  Google Scholar 

  • Boden, M.: Is metabolism necessary? Br. J. Philos. Sci. 50, 231–248 (1999)

    Article  Google Scholar 

  • Butch, C., Meringer, M., Gagnon, J.-S., Cleaves, J.: Open questions in understanding life’s origins. Commun. Chem. 4, 11 (2021)

    Article  Google Scholar 

  • Cardenas, M., Letelier, J.-C., Gutierrez, C., Cornish-Bowden, A., Soto-Andrade, J.: Closure to efficient causation, computability and artificial life. J. Theor. Biol. 263, 79–92 (2010)

    Article  MathSciNet  Google Scholar 

  • Chertow, M.: IPAT equation and its variants. J. Ind. Ecol. 4(4), 13–29 (2000)

    Article  Google Scholar 

  • Chirikjian, G., Zhou, Y., Suthakorn, J.: Self-replicating robots for lunar development. IEEE/ASME Trans. Mechatron. 7(4), 462–472 (2002)

    Article  Google Scholar 

  • Csendes, T.: Simulation study of the chemoton. Kybernetes 13(2), 79–85 (1984)

    Article  Google Scholar 

  • Csete, M., Doyle, J.: Bow ties, metabolism and disease. Trends Biotechnol. 22, 446–450 (2004)

    Article  Google Scholar 

  • Csete, M.E., Doyle, J.C.: Reverse engineering of biological complexity. Science 295(5560), 1664–1669 (2002)

    Article  Google Scholar 

  • Deutsch, D., Marletto, C:: Constructor theory of information. Proc. Royal Soc. A 471(Feb), 20140540 (2015)

    Google Scholar 

  • Di Paolo, E.: Extended life. Topoi 28, 9–21 (2009)

    Article  Google Scholar 

  • Elaskri, A., Ellery, A.: 3D printed electric motors as a step towards self-replicating machines. In: Proceedings of the International Symposium Artificial Intelligence, Robotics and Automation in Space, paper no 5020 (2020)

    Google Scholar 

  • Ellery, A.: Are self-replicating machines feasible? AIAA J. Spacecraft Rockets 53(2), 317–327 (2016)

    Article  Google Scholar 

  • Ellery, A.: Space exploration through self-replication technology compensates for discounting in NPV cost-benefit analysis – a business case? New Space J. 5(3), 141–154 (2017)

    Article  Google Scholar 

  • Ellery, A.: Engineering a lunar photolithoautotroph to thrive on the Moon – life or simulacrum? Int. J. Astrobiol. 17(3), 258–280 (2018)

    Article  Google Scholar 

  • Ellery, A.: Sustainable in-situ resource utilisation on the Moon. Planet. Space Sci. 184(4), 104870 (2020)

    Article  Google Scholar 

  • Ellery, A.: How to build a biological machine using engineering materials and methods. Biomimetics J. 5(3), 35 (2020)

    Article  Google Scholar 

  • Ellery, A.: Are there biomimetic lessons from genetic regulatory networks for developing a lunar industrial ecology? Biomimetics 6(3), 50 (2021). https://doi.org/10.3390/biomimetics6030050

    Article  Google Scholar 

  • Ellery, A.: Generating and storing power on the Moon using in-situ resources. Proc IMechE J. Aerospace Eng. 236(6), 1045–1063 (2021)

    Article  Google Scholar 

  • Ellery, A.: “Lunar demandite – you gotta make this using nothing but that. In: Proceedings of teh ASCE Earth & Space Conference Colorado School of Mines, Denver, pp, 743–758 (2022)

    Google Scholar 

  • Ellery, A.: Bootstrapping neural electronics from lunar resources for in-situ artificial intelligence applications. In: Proceedings of the 42nd SGAI International Conference on Artificial Intelligence – Lecture Notes in Artificial Intelligence, vol. 13652, pp. 83–97 (2022)

    Google Scholar 

  • Ellery, A.: Curbing the fruitfulness of self-replicating machines. Int. J. Astrobiol. 21(4), 243–259 (2022). https://doi.org/10.1017/S1473550422000246

    Article  Google Scholar 

  • Ellery, A.: The “sensible” way to construct robots from lunar resources. In: Proceedings of the 73rd International Astronautics Congress, Paris, IAC-22.D3.2B.x68580 (2022)

    Google Scholar 

  • Ellery, A., Eiben, A.: To evolve or not to evolve: that is the question. In: Proceedings of the Artificial Life Conference 357–364 (2019)

    Google Scholar 

  • Ellery, A., Mellor, I., Wanjara, P., Conti, M.: Metalysis FFC process as a strategic lunar in-situ resource utilisation technology. New Space J. 10(2), 224–238 (2022)

    Article  Google Scholar 

  • Franz, R.: Life Cycle of Materials in Mobile Phones, Underwriters Laboratories White Paper (2011)

    Google Scholar 

  • Freitas, R., Gilbreath, W.: Advanced Automation for Space Missions, NASA CP-2255 (1980)

    Google Scholar 

  • Freitas, R., Merkle, R.: Kinematic Self-Replicating Machines. Landes Bioscience, Austin, TX (2004)

    Google Scholar 

  • Garzon, F.: Quest for cognition in plant neurobiology. Plant Signal. Behav. 2(4), 208–211 (2007)

    Article  Google Scholar 

  • Gruntman, M., Groß, D., Májeková, M., Tielbörger, K.: Decision-making in plants under competition. Nat. Commun. 8, 2235 (2017). https://doi.org/10.1038/s41467-017-02147-2

    Article  Google Scholar 

  • Jones R, Haufe P, Sells E, Iravani P, Olliver V, Palmer C, Bowyer A (2011) “RepRap – the replicating rapid prototyper” Robotica 29 (Jan), 177–191

    Google Scholar 

  • Korbak, T.: Self-organisation, (M, R)-systems and enactive cognitive science. Adapt. Behav. 31(1), 35–49 (2023)

    Article  Google Scholar 

  • Koshland, D.E.: The seven pillars of life. Science 295(5563), 2215–2216 (2002)

    Article  Google Scholar 

  • Lambert, J., Hall, C., Balogh, S., Gupta, A., Arnold, M.: Energy, EROI and quality of life. Energy Policy 64, 153–167 (2014)

    Article  Google Scholar 

  • Langton, C.: Self-reproduction in cellular automata. Physica D 10(1–2), 135–144 (1984)

    Article  Google Scholar 

  • Lehman, N.E., Kauffman, S.: Constraint closure drove major transitions in the origins of life. Entropy 23(1), 105 (2021). https://doi.org/10.3390/e23010105

    Article  Google Scholar 

  • Lenski, R., Ofria, C., Pennock, R., Adami, C.: Evolutionary origin of complex features. Nature 423(May), 139–144 (2003)

    Article  Google Scholar 

  • Lika, K., Kooijman, S.: Life history implications of allocation to growth versus reproduction in dynamic energy budgets. Bull. Math. Biol. 65, 809–834 (2003)

    Article  Google Scholar 

  • Marletto, C.: Constructor theory of life. J. Royal Soc. Interface 12, 20141226 (2015)

    Article  Google Scholar 

  • Monshausen, G., Gilroy, S.: Feeling green: mechanosensing in plants. Trends Cell Biol. 19(5), 228–235 (2009)

    Article  Google Scholar 

  • Montevil, M., Mossio, M.: Biological organisation as closure of constraints. J. Theor. Biol. 372, 179–191 (2015)

    Article  MathSciNet  Google Scholar 

  • Morowitz, H., Allen, J., Nelson, M., Alling, A.: Closure as a scientific concept and its application to ecosystem ecology and the science of the biosphere. Adv. Space Res. 36, 1305–1311 (2005)

    Article  Google Scholar 

  • Mossio, M., Moreno, A.: Organisational closure in biological organisms. Hist. Philos. Life Sci. 32, 269–288 (2010)

    Google Scholar 

  • Muchowska, K., Varma, S., Moran, J.: Synthesis and breakdown of universal metabolic precursors promoted by iron. Nature 569(May), 104–107 (2019)

    Article  Google Scholar 

  • Rocha, M.: Evolution with material symbol systems. BioSystems 60, 95–121 (2001)

    Article  Google Scholar 

  • Schwede, J., et al.: Photon-enhanced thermionic emission for solar concentrator systems. Nat. Mater. 9, 762–767 (2010)

    Article  Google Scholar 

  • Sewell, G.: Human-engineered self-replicating machines. Biocosmos 1, 12–15 (2023)

    Article  Google Scholar 

  • Vega, F.: The cell as a realization of the (M, R) system. Biosystems 225, 104846 (2023). https://doi.org/10.1016/j.biosystems.2023.104846

    Article  Google Scholar 

  • Villalobos, M., Razeto-Barry, P.: Are living beings extended autopoietic systems? An embodied reply. Adapt. Behav. 28(1), 3–13 (2020)

    Article  Google Scholar 

  • von Neumann, J., Burks, A.: Theory of Self-Reproducing Automata. University of Illinois Press, Champaign, USA (1966)

    Google Scholar 

  • von Tiesenhausen, G., Darbro, W.: Self-replicating systems – a systems engineering approach. NASA TM-78304, Marshall Space Flight Centre, Alabama (1980)

    Google Scholar 

  • Zykov, V., Mytilinaios, E., Adams, B., Lipson, H.: Self-reproducing machines. Nature 435, 163–164 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This study was not funded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Ellery .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Appendix: Lunar Industrial Ecology

Appendix: Lunar Industrial Ecology

Table A1. Lunar industrial ecology which extracts from lunar minerals a suite of demandite-listed functional materials with some potential applications (emboldened oxides may be reduced by the FFC process into pure metals

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ellery, A. (2025). Vertical Closure Constraint for Self-replicating Machines. In: Szczecinski, N.S., Webster-Wood, V., Tresch, M., Nourse, W.R.P., Mura, A., Quinn, R.D. (eds) Biomimetic and Biohybrid Systems. Living Machines 2024. Lecture Notes in Computer Science(), vol 14930. Springer, Cham. https://doi.org/10.1007/978-3-031-72597-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72597-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72596-8

  • Online ISBN: 978-3-031-72597-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics