Abstract
In examining the implementation of a physical self-replicating machine on the Moon, we explore the implications of vertical closure as a constraint on the design of such. We describe the design of this self-replicating machine from its demandite list of in-situ sourced materials, a lunar industrial ecology to extract those materials, electrochemical and other chemical processes to purify desired materials and additive manufacturing methods for 3D printing the major components of the self-replicator. We then turn to the vertical closure issue defined through metrics based on resource-returned-on-investment, i.e. physical output/input ratios, and how this drives the design of the self-replicator. Several biological phenomena emerge suggesting that physical self-replicating machines can provide insights into biological life, terrestrial or extraterrestrial.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alpi, A., et al.: Plant neurobiology: no brain, no gain? Trends in Plant Sciences 12(4), 135–136 (2007)
Bardi, U., Lavacchi, A., Yaxley, L.: Modelling EROEI and net energy in the exploitation of non-renewable resources. Ecol. Model. 223, 54–58 (2011)
Benenson, Y., Paz-Elizur, T., Adar, R., Kelnan, E., Livneh, Z., Shapiro, E.: Programmable and autonomous computing machine made of biomolecules. Nature 414(6862), 430–434 (2001). https://doi.org/10.1038/35106533
Bich, L., Bechtel, W.: Control mechanisms: explaining the integration and versatility of biological organisms. Adaptive Behaviour 30(5), 389–407 (2022)
Boden, M.: Is metabolism necessary? Br. J. Philos. Sci. 50, 231–248 (1999)
Butch, C., Meringer, M., Gagnon, J.-S., Cleaves, J.: Open questions in understanding life’s origins. Commun. Chem. 4, 11 (2021)
Cardenas, M., Letelier, J.-C., Gutierrez, C., Cornish-Bowden, A., Soto-Andrade, J.: Closure to efficient causation, computability and artificial life. J. Theor. Biol. 263, 79–92 (2010)
Chertow, M.: IPAT equation and its variants. J. Ind. Ecol. 4(4), 13–29 (2000)
Chirikjian, G., Zhou, Y., Suthakorn, J.: Self-replicating robots for lunar development. IEEE/ASME Trans. Mechatron. 7(4), 462–472 (2002)
Csendes, T.: Simulation study of the chemoton. Kybernetes 13(2), 79–85 (1984)
Csete, M., Doyle, J.: Bow ties, metabolism and disease. Trends Biotechnol. 22, 446–450 (2004)
Csete, M.E., Doyle, J.C.: Reverse engineering of biological complexity. Science 295(5560), 1664–1669 (2002)
Deutsch, D., Marletto, C:: Constructor theory of information. Proc. Royal Soc. A 471(Feb), 20140540 (2015)
Di Paolo, E.: Extended life. Topoi 28, 9–21 (2009)
Elaskri, A., Ellery, A.: 3D printed electric motors as a step towards self-replicating machines. In: Proceedings of the International Symposium Artificial Intelligence, Robotics and Automation in Space, paper no 5020 (2020)
Ellery, A.: Are self-replicating machines feasible? AIAA J. Spacecraft Rockets 53(2), 317–327 (2016)
Ellery, A.: Space exploration through self-replication technology compensates for discounting in NPV cost-benefit analysis – a business case? New Space J. 5(3), 141–154 (2017)
Ellery, A.: Engineering a lunar photolithoautotroph to thrive on the Moon – life or simulacrum? Int. J. Astrobiol. 17(3), 258–280 (2018)
Ellery, A.: Sustainable in-situ resource utilisation on the Moon. Planet. Space Sci. 184(4), 104870 (2020)
Ellery, A.: How to build a biological machine using engineering materials and methods. Biomimetics J. 5(3), 35 (2020)
Ellery, A.: Are there biomimetic lessons from genetic regulatory networks for developing a lunar industrial ecology? Biomimetics 6(3), 50 (2021). https://doi.org/10.3390/biomimetics6030050
Ellery, A.: Generating and storing power on the Moon using in-situ resources. Proc IMechE J. Aerospace Eng. 236(6), 1045–1063 (2021)
Ellery, A.: “Lunar demandite – you gotta make this using nothing but that. In: Proceedings of teh ASCE Earth & Space Conference Colorado School of Mines, Denver, pp, 743–758 (2022)
Ellery, A.: Bootstrapping neural electronics from lunar resources for in-situ artificial intelligence applications. In: Proceedings of the 42nd SGAI International Conference on Artificial Intelligence – Lecture Notes in Artificial Intelligence, vol. 13652, pp. 83–97 (2022)
Ellery, A.: Curbing the fruitfulness of self-replicating machines. Int. J. Astrobiol. 21(4), 243–259 (2022). https://doi.org/10.1017/S1473550422000246
Ellery, A.: The “sensible” way to construct robots from lunar resources. In: Proceedings of the 73rd International Astronautics Congress, Paris, IAC-22.D3.2B.x68580 (2022)
Ellery, A., Eiben, A.: To evolve or not to evolve: that is the question. In: Proceedings of the Artificial Life Conference 357–364 (2019)
Ellery, A., Mellor, I., Wanjara, P., Conti, M.: Metalysis FFC process as a strategic lunar in-situ resource utilisation technology. New Space J. 10(2), 224–238 (2022)
Franz, R.: Life Cycle of Materials in Mobile Phones, Underwriters Laboratories White Paper (2011)
Freitas, R., Gilbreath, W.: Advanced Automation for Space Missions, NASA CP-2255 (1980)
Freitas, R., Merkle, R.: Kinematic Self-Replicating Machines. Landes Bioscience, Austin, TX (2004)
Garzon, F.: Quest for cognition in plant neurobiology. Plant Signal. Behav. 2(4), 208–211 (2007)
Gruntman, M., Groß, D., Májeková, M., Tielbörger, K.: Decision-making in plants under competition. Nat. Commun. 8, 2235 (2017). https://doi.org/10.1038/s41467-017-02147-2
Jones R, Haufe P, Sells E, Iravani P, Olliver V, Palmer C, Bowyer A (2011) “RepRap – the replicating rapid prototyper” Robotica 29 (Jan), 177–191
Korbak, T.: Self-organisation, (M, R)-systems and enactive cognitive science. Adapt. Behav. 31(1), 35–49 (2023)
Koshland, D.E.: The seven pillars of life. Science 295(5563), 2215–2216 (2002)
Lambert, J., Hall, C., Balogh, S., Gupta, A., Arnold, M.: Energy, EROI and quality of life. Energy Policy 64, 153–167 (2014)
Langton, C.: Self-reproduction in cellular automata. Physica D 10(1–2), 135–144 (1984)
Lehman, N.E., Kauffman, S.: Constraint closure drove major transitions in the origins of life. Entropy 23(1), 105 (2021). https://doi.org/10.3390/e23010105
Lenski, R., Ofria, C., Pennock, R., Adami, C.: Evolutionary origin of complex features. Nature 423(May), 139–144 (2003)
Lika, K., Kooijman, S.: Life history implications of allocation to growth versus reproduction in dynamic energy budgets. Bull. Math. Biol. 65, 809–834 (2003)
Marletto, C.: Constructor theory of life. J. Royal Soc. Interface 12, 20141226 (2015)
Monshausen, G., Gilroy, S.: Feeling green: mechanosensing in plants. Trends Cell Biol. 19(5), 228–235 (2009)
Montevil, M., Mossio, M.: Biological organisation as closure of constraints. J. Theor. Biol. 372, 179–191 (2015)
Morowitz, H., Allen, J., Nelson, M., Alling, A.: Closure as a scientific concept and its application to ecosystem ecology and the science of the biosphere. Adv. Space Res. 36, 1305–1311 (2005)
Mossio, M., Moreno, A.: Organisational closure in biological organisms. Hist. Philos. Life Sci. 32, 269–288 (2010)
Muchowska, K., Varma, S., Moran, J.: Synthesis and breakdown of universal metabolic precursors promoted by iron. Nature 569(May), 104–107 (2019)
Rocha, M.: Evolution with material symbol systems. BioSystems 60, 95–121 (2001)
Schwede, J., et al.: Photon-enhanced thermionic emission for solar concentrator systems. Nat. Mater. 9, 762–767 (2010)
Sewell, G.: Human-engineered self-replicating machines. Biocosmos 1, 12–15 (2023)
Vega, F.: The cell as a realization of the (M, R) system. Biosystems 225, 104846 (2023). https://doi.org/10.1016/j.biosystems.2023.104846
Villalobos, M., Razeto-Barry, P.: Are living beings extended autopoietic systems? An embodied reply. Adapt. Behav. 28(1), 3–13 (2020)
von Neumann, J., Burks, A.: Theory of Self-Reproducing Automata. University of Illinois Press, Champaign, USA (1966)
von Tiesenhausen, G., Darbro, W.: Self-replicating systems – a systems engineering approach. NASA TM-78304, Marshall Space Flight Centre, Alabama (1980)
Zykov, V., Mytilinaios, E., Adams, B., Lipson, H.: Self-reproducing machines. Nature 435, 163–164 (2004)
Acknowledgments
This study was not funded.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
Appendix: Lunar Industrial Ecology
Appendix: Lunar Industrial Ecology
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ellery, A. (2025). Vertical Closure Constraint for Self-replicating Machines. In: Szczecinski, N.S., Webster-Wood, V., Tresch, M., Nourse, W.R.P., Mura, A., Quinn, R.D. (eds) Biomimetic and Biohybrid Systems. Living Machines 2024. Lecture Notes in Computer Science(), vol 14930. Springer, Cham. https://doi.org/10.1007/978-3-031-72597-5_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-72597-5_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72596-8
Online ISBN: 978-3-031-72597-5
eBook Packages: Computer ScienceComputer Science (R0)