Skip to main content

Binocular Vision and Vector-Summation Based Integration of Bilateral Innate and Learned Visual Cues in Insect Navigation

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14930))

Included in the following conference series:

  • 213 Accesses

Abstract

Insects rely extensively on visual information for navigation, utilizing a combination of innate instincts and learned behaviors. The mushroom body (MB) has been identified as a key player in insect visual learning, with insects possessing bilateral MBs. However, the mechanisms underlying the interaction between the left and right MBs, and how innate and learned visual cues are integrated for accurate navigation, remain elusive. In this study, we employ a novel approach wherein visual models fusing MB and innate are initially provided with binocular (left and right) visual inputs, followed by the application of a bio-plausible vector-summation method to integrate binocular innate and learned (MB) visual guidance. We verify the efficacy of this integration method by reproducing recently published data from biologists, thus providing computational support for empirical findings. This research not only sheds light on the potential mechanism for integrating bilateral innate and learned visual cues in the insect brain but also offers insights that could inspire efficient solutions for information fusion in robotics.

Application Demonstration and Industrialization of Reconfigurable Digital Intelligent Control Technology for Flexible Platforms (Grant No.CXTD2020001); National Natural Science Foundation of China under the Grant No.62206066.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ardin, P., Peng, F., Mangan, M., Lagogiannis, K., Webb, B.: Using an insect mushroom body circuit to encode route memory in complex natural environments. PLoS Comput. Biol. 12(2), e1004683 (2016)

    Article  Google Scholar 

  2. Aso, Y., et al.: The neuronal architecture of the mushroom body provides a logic for associative learning. elife 3, e04577 (2014)

    Article  Google Scholar 

  3. Aso, Y., et al.: Mushroom body output neurons encode valence and guide memory-based action selection in drosophila. elife 3, e04580 (2014)

    Article  Google Scholar 

  4. Bairlein, F., et al.: Cross-hemisphere migration of a 25 g songbird. Biol. Let. 8(4), 505–507 (2012)

    Article  Google Scholar 

  5. Brenner, E., Smeets, J.B.: Two eyes in action. Exp. Brain Res. 170, 302–311 (2006)

    Article  Google Scholar 

  6. Buehlmann, C., Dell-Cronin, S., et al.: Impact of central complex lesions on innate and learnt visual navigation in ants. J. Comp. Physiol. A 209(4), 737–746 (2023). https://doi.org/10.1007/s00359-023-01613-1

    Article  Google Scholar 

  7. Buehlmann, C., Mangan, M., Graham, P.: Multimodal interactions in insect navigation. Anim. Cogn. 23(6), 1129–1141 (2020)

    Article  Google Scholar 

  8. Buehlmann, C., Wozniak, B., Goulard, R., Webb, B., Graham, P., Niven, J.E.: Mushroom bodies are required for learned visual navigation, but not for innate visual behavior, in ants. Curr. Biol. 30(17), 3438–3443 (2020)

    Article  Google Scholar 

  9. Collett, M., Chittka, L., Collett, T.S.: Spatial memory in insect navigation. Curr. Biol. 23(17), R789–R800 (2013)

    Article  Google Scholar 

  10. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman and Hall/CRC (1994)

    Book  Google Scholar 

  11. Eschbach, C., et al.: Circuits for integrating learned and innate valences in the insect brain. elife 10, e62567 (2021)

    Article  Google Scholar 

  12. Freas, C.A., Spetch, M.L.: Varieties of visual navigation in insects. Anim. Cogn. 26(1), 319–342 (2023)

    Article  Google Scholar 

  13. Goulard, R., Buehlmann, C., Niven, J.E., Graham, P., Webb, B.: A unified mechanism for innate and learned visual landmark guidance in the insect central complex. PLoS Comput. Biol. 17(9), e1009383 (2021)

    Article  Google Scholar 

  14. Habenstein, J., Amini, E., Grübel, K., El Jundi, B., Rössler, W.: The brain of cataglyphis ants: neuronal organization and visual projections. J. Comp. Neurol. 528(18), 3479–3506 (2020)

    Article  Google Scholar 

  15. Heinze, S.: Unraveling the neural basis of insect navigation. Curr. Opin. Insect Sci. 24, 58–67 (2017)

    Article  Google Scholar 

  16. Heinze, S.: Visual navigation: ants lose track without mushroom bodies. Curr. Biol. 30(17), R984–R986 (2020)

    Article  Google Scholar 

  17. Heinze, S., et al.: A unified platform to manage, share, and archive morphological and functional data in insect neuroscience. eLife 10, e65376 (2021)

    Article  Google Scholar 

  18. Hoinville, T., Wehner, R.: Optimal multiguidance integration in insect navigation. Proc. Natl. Acad. Sci. 115(11), 2824–2829 (2018)

    Article  Google Scholar 

  19. Kamhi, J.F., Barron, A.B., Narendra, A.: Vertical lobes of the mushroom bodies are essential for view-based navigation in Australian myrmecia ants. Curr. Biol. 30(17), 3432–3437 (2020)

    Article  Google Scholar 

  20. Kim, S.S., Rouault, H., Druckmann, S., Jayaraman, V.: Ring attractor dynamics in the drosophila central brain. Science 356(6340), 849–853 (2017)

    Article  Google Scholar 

  21. Le Moël, F., Stone, T., Lihoreau, M., Wystrach, A., Webb, B.: The central complex as a potential substrate for vector based navigation. Front. Psychol. 10, 380097 (2019)

    Google Scholar 

  22. Mitchell, R., Shaverdian, S., Dacke, M., Webb, B.: A model of cue integration as vector summation in the insect brain. Proc. R. Soc. B 290(2001), 20230767 (2023)

    Article  Google Scholar 

  23. Müller, J., Nawrot, M., Menzel, R., Landgraf, T.: A neural network model for familiarity and context learning during honeybee foraging flights. Biol. Cybern. 112, 113–126 (2018)

    Article  Google Scholar 

  24. Rayshubskiy, A.: Neural Control of Steering in Walking Drosophila. Ph.D. thesis, Harvard University (2020)

    Google Scholar 

  25. Schwarz, S., Clement, L., Haalck, L., Risse, B., Wystrach, A.: Compensation to visual impairments and behavioral plasticity in navigating ants. bioRxiv (2023)

    Google Scholar 

  26. Sun, X., Mangan, M., Yue, S.: An analysis of a ring attractor model for cue integration. In: Biomimetic and Biohybrid Systems: 7th International Conference, Living Machines 2018, Paris, France, July 17–20, 2018, Proceedings 7, pp. 459–470. Springer (2018)

    Google Scholar 

  27. Sun, X., Yue, S., Mangan, M.: A decentralised neural model explaining optimal integration of navigational strategies in insects. Elife 9, e54026 (2020)

    Article  Google Scholar 

  28. Sun, X., Yue, S., Mangan, M.: How the insect central complex could coordinate multimodal navigation. Elife 10, e73077 (2021)

    Article  Google Scholar 

  29. Takemura, S., et al.: A connectome of a learning and memory center in the adult drosophila brain. Elife 6, e26975 (2017)

    Article  Google Scholar 

  30. Thiagarajan, D., Sachse, S.: Multimodal information processing and associative learning in the insect brain. Insects 13(4), 332 (2022)

    Article  Google Scholar 

  31. Wystrach, A., Philippides, A., Aurejac, A., Cheng, K., Graham, P.: Visual scanning behaviours and their role in the navigation of the Australian desert ant Melophorus bagoti. J. Comp. Physiol. A 200, 615–626 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, Q., Sun, X., Li, H. (2025). Binocular Vision and Vector-Summation Based Integration of Bilateral Innate and Learned Visual Cues in Insect Navigation. In: Szczecinski, N.S., Webster-Wood, V., Tresch, M., Nourse, W.R.P., Mura, A., Quinn, R.D. (eds) Biomimetic and Biohybrid Systems. Living Machines 2024. Lecture Notes in Computer Science(), vol 14930. Springer, Cham. https://doi.org/10.1007/978-3-031-72597-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72597-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72596-8

  • Online ISBN: 978-3-031-72597-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics