Abstract
We study the problem of computing the reachable principals of the simulation preorder and the reachable blocks of simulation equivalence. Following a theoretical investigation of this problem, which highlights a sharp contrast with the already settled case of bisimulation, we design algorithms to solve this problem by leveraging the idea of interleaving reachability and simulation computation while possibly avoiding the computation of all the reachable states or the whole simulation preorder. In particular, we put forward a symbolic algorithm processing state partitions and, in turn, relations between their blocks, which is suited for processing infinite-state systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
- 2.
As shown in Sect. 4, an algorithm terminating on all infinite state systems cannot exist.
- 3.
Observe that since \(R_{\textrm{sim}}\) is a preorder, we have that \(P_{\textrm{sim}}\in \textrm{Part}(\varSigma )\) coincides with the equivalence classes of the similarity equivalence \(R_{\textrm{sim}}\cap (R_{\textrm{sim}})^{-1}\).
- 4.
For some systems, \((\textrm{rp}_1\)) could even be infinite, and \((\textrm{rp}_2\)) be a finite set.
- 5.
We distinguish the states of \(\textsf{post}^*(I)\) from those in its subset \(\sigma \) by referring to the states in \(\sigma \) as provably reachable. We extend this notion to principals.
- 6.
Note that line 11 might break transitivity of \(R\). In fact, \(R\) is not guaranteed to be a preorder during execution, and not even at termination.
- 7.
Reachability analysis is mostly superfluous on explicitly represented systems as they usually do not encode unreachable states.
References
Alur, R., Henzinger, T.A.: Computer-Aided Verification (1999). chapter 4: Graph minimization (Unpublished manuscript)
Bensalem, S., Bouajjani, A., Loiseaux, C., Sifakis, J.: Property preserving simulations. In: von Bochmann, G., Probst, D.K. (eds.) CAV 1992. LNCS, vol. 663, pp. 260–273. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56496-9_21
Bloom, B., Paige, R.: Transformational design and implementation of a new efficient solution to the ready simulation problem. Sci. Comput. Program. 24(3), 189–220 (1995). https://doi.org/10.1016/0167-6423(95)00003-B
Bouajjani, A., Fernandez, J.-C., Halbwachs, N.: Minimal model generation. In: Clarke, E.M., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 197–203. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0023733
Bouajjani, A., Fernandez, J.C., Halbwachs, N., Raymond, P., Ratel, C.: Minimal state graph generation. Sci. Comput. Program. 18(3), 247–269 (1992). https://doi.org/10.1016/0167-6423(92)90018-7
Bustan, D., Grumberg, O.: Simulation-based minimization. ACM Trans. Comput. Log. 4(2), 181–206 (2003). https://doi.org/10.1145/635499.635502
Cécé, G.: Foundation for a series of efficient simulation algorithms. In: Proceedings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, pp. 1–12. IEEE Computer Society (2017). https://doi.org/10.1109/LICS.2017.8005069
Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R.: Handbook of Model Checking, 1st edn. Springer, Cham (2018)
Crafa, S., Ranzato, F., Tapparo, F.: Saving space in a time efficient simulation algorithm. Fundam. Informaticae 108(1–2), 23–42 (2011). https://doi.org/10.3233/FI-2011-412
Fisler, K., Vardi, M.Y.: Bisimulation minimization and symbolic model checking. Formal Methods Syst. Des. 21(1), 39–78 (2002). https://doi.org/10.1023/A:1016091902809
Gentilini, R., Piazza, C., Policriti, A.: From bisimulation to simulation: coarsest partition problems. J. Autom. Reason. 31(1), 73–103 (2003). https://doi.org/10.1023/A:1027328830731
van Glabbeek, R., Ploeger, B.: Correcting a space-efficient simulation algorithm. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 517–529. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-1_49
Gratzer, G.A.: Lattice Theory: Foundation. Springer, Basel (2011)
Grumberg, O., Long, D.E.: Model checking and modular verification. In: Baeten, J.C.M., Groote, J.F. (eds.) CONCUR 1991. LNCS, vol. 527, pp. 250–265. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54430-5_93
Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans. Program. Lang. Syst. (TOPLAS) 16(3), 843–871 (1994). https://doi.org/10.1145/177492.177725
Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: SYNERGY: a new algorithm for property checking. In: Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE 2006, pp. 117–127. ACM (2006). https://doi.org/10.1145/1181775.1181790
Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite and infinite graphs. In: Proceedings of IEEE 36th Annual Foundations of Computer Science, FOCS 1995, pp. 453–462 (1995). https://doi.org/10.1109/SFCS.1995.492576
Henzinger, T.A., Kopke, P.W.: Hybrid automata with finite mutual simulations. Technical report, TR-95-1497, Computer Science Department (1995)
Hofman, P., Lasota, S., Mayr, R., Totzke, P.: Simulation problems over one-counter nets. Log. Methods Comput. Sci. 12, 1–46 (2016). https://doi.org/10.2168/LMCS-12(1:6)2016
Kučera, A., Jančar, P.: Equivalence-checking on infinite-state systems: techniques and results. Theory Pract. Log. Program. 6(3), 227–264 (2006). https://doi.org/10.1017/S1471068406002651
Kucera, A., Mayr, R.: Simulation preorder over simple process algebras. Inf. Comput. 173(2), 184–198 (2002). https://doi.org/10.1006/inco.2001.3122
Kučera, A., Mayr, R.: Why is simulation harder than bisimulation? In: Brim, L., Křetínský, M., Kučera, A., Jančar, P. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 594–609. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45694-5_39
Lee, D., Yannakakis, M.: Online minimization of transition systems. In: Proceedings of the 24th Annual ACM Symposium on Theory of Computing, STOC 1992, pp. 264–274. ACM (1992). https://doi.org/10.1145/129712.129738
Loiseaux, C., Graf, S., Sifakis, J., Bouajjani, A., Bensalem, S.: Property preserving abstractions for the verification of concurrent systems. Formal Methods Syst. Des. 6(1), 11–44 (1995). https://doi.org/10.1007/BF01384313
Majumdar, R., Ozay, N., Schmuck, A.K.: On abstraction-based controller design with output feedback. In: Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control, HSCC 2020, pp. 1–11. ACM (2020). https://doi.org/10.1145/3365365.3382219
Păsăreanu, C.S., Pelánek, R., Visser, W.: Concrete model checking with abstract matching and refinement. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 52–66. Springer, Heidelberg (2005). https://doi.org/10.1007/11513988_7
Ranzato, F.: A more efficient simulation algorithm on Kripke structures. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 753–764. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40313-2_66
Ranzato, F.: An efficient simulation algorithm on Kripke structures. Acta Informatica 51(2), 107–125 (2014). https://doi.org/10.1007/s00236-014-0195-9
Ranzato, F., Tapparo, F.: A new efficient simulation equivalence algorithm. In: Proceedings of the 22nd IEEE Symposium on Logic in Computer Science, LICS 2007, pp. 171–180. IEEE Computer Society (2007). https://doi.org/10.1109/LICS.2007.8
Ranzato, F., Tapparo, F.: An efficient simulation algorithm based on abstract interpretation. Inf. Comput. 208(1), 1–22 (2010). https://doi.org/10.1016/j.ic.2009.06.002
Tan, L., Cleaveland, R.: Simulation revisited. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 480–495. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45319-9_33
van Glabbeek, R., Ploeger, B.: Five determinisation algorithms. In: Ibarra, O.H., Ravikumar, B. (eds.) CIAA 2008. LNCS, vol. 5148, pp. 161–170. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70844-5_17
Yannakakis, M., Lee, D.: An efficient algorithm for minimizing real-time transition systems: extended abstract. Formal Methods Syst. Des. 11(2), 113–136 (1997). https://doi.org/10.1023/A:1008621829508
Acknowledgements
Francesco Ranzato was partially funded by: the Italian MUR, under the PRIN 2022 PNRR project no. P2022HXNSC; Meta (formerly Facebook) Research, under a “Probability and Programming Research Award” and under a WhatsApp Research Award on “Privacy-aware Program Analysis”; by an Amazon Research Award for “AWS Automated Reasoning”. Nicolas Manini is supported by the grant PIPF-2022/COM-24370, funded by the Madrid Regional Government. This publication is part of the grant PID2022-138072OB-I00, funded by MCIN/AEI/10.13039/501100011033/FEDER, UE and part of the PRODIGY Project (TED2021-132464B-I00) funded by MCIN/AEI/10.13039/501100011033/and the European Union NextGenerationEU/PRTR.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ganty, P., Manini, N., Ranzato, F. (2024). Computing Reachable Simulations on Transition Systems. In: Kovács, L., Sokolova, A. (eds) Reachability Problems. RP 2024. Lecture Notes in Computer Science, vol 15050. Springer, Cham. https://doi.org/10.1007/978-3-031-72621-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-72621-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72620-0
Online ISBN: 978-3-031-72621-7
eBook Packages: Computer ScienceComputer Science (R0)