Skip to main content

Computing Reachable Simulations on Transition Systems

  • Conference paper
  • First Online:
Reachability Problems (RP 2024)

Abstract

We study the problem of computing the reachable principals of the simulation preorder and the reachable blocks of simulation equivalence. Following a theoretical investigation of this problem, which highlights a sharp contrast with the already settled case of bisimulation, we design algorithms to solve this problem by leveraging the idea of interleaving reachability and simulation computation while possibly avoiding the computation of all the reachable states or the whole simulation preorder. In particular, we put forward a symbolic algorithm processing state partitions and, in turn, relations between their blocks, which is suited for processing infinite-state systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term principal comes from the well-known notion of principal ideal [13, Chapter I, sect. 3.4]. Detailed definitions are given in Sect. 3.

  2. 2.

    As shown in Sect. 4, an algorithm terminating on all infinite state systems cannot exist.

  3. 3.

    Observe that since \(R_{\textrm{sim}}\) is a preorder, we have that \(P_{\textrm{sim}}\in \textrm{Part}(\varSigma )\) coincides with the equivalence classes of the similarity equivalence \(R_{\textrm{sim}}\cap (R_{\textrm{sim}})^{-1}\).

  4. 4.

    For some systems, \((\textrm{rp}_1\)) could even be infinite, and \((\textrm{rp}_2\)) be a finite set.

  5. 5.

    We distinguish the states of \(\textsf{post}^*(I)\) from those in its subset \(\sigma \) by referring to the states in \(\sigma \) as provably reachable. We extend this notion to principals.

  6. 6.

    Note that line 11 might break transitivity of \(R\). In fact, \(R\) is not guaranteed to be a preorder during execution, and not even at termination.

  7. 7.

    Reachability analysis is mostly superfluous on explicitly represented systems as they usually do not encode unreachable states.

References

  1. Alur, R., Henzinger, T.A.: Computer-Aided Verification (1999). chapter 4: Graph minimization (Unpublished manuscript)

    Google Scholar 

  2. Bensalem, S., Bouajjani, A., Loiseaux, C., Sifakis, J.: Property preserving simulations. In: von Bochmann, G., Probst, D.K. (eds.) CAV 1992. LNCS, vol. 663, pp. 260–273. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56496-9_21

    Chapter  Google Scholar 

  3. Bloom, B., Paige, R.: Transformational design and implementation of a new efficient solution to the ready simulation problem. Sci. Comput. Program. 24(3), 189–220 (1995). https://doi.org/10.1016/0167-6423(95)00003-B

    Article  MathSciNet  Google Scholar 

  4. Bouajjani, A., Fernandez, J.-C., Halbwachs, N.: Minimal model generation. In: Clarke, E.M., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 197–203. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0023733

    Chapter  Google Scholar 

  5. Bouajjani, A., Fernandez, J.C., Halbwachs, N., Raymond, P., Ratel, C.: Minimal state graph generation. Sci. Comput. Program. 18(3), 247–269 (1992). https://doi.org/10.1016/0167-6423(92)90018-7

    Article  MathSciNet  Google Scholar 

  6. Bustan, D., Grumberg, O.: Simulation-based minimization. ACM Trans. Comput. Log. 4(2), 181–206 (2003). https://doi.org/10.1145/635499.635502

    Article  MathSciNet  Google Scholar 

  7. Cécé, G.: Foundation for a series of efficient simulation algorithms. In: Proceedings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, pp. 1–12. IEEE Computer Society (2017). https://doi.org/10.1109/LICS.2017.8005069

  8. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R.: Handbook of Model Checking, 1st edn. Springer, Cham (2018)

    Book  Google Scholar 

  9. Crafa, S., Ranzato, F., Tapparo, F.: Saving space in a time efficient simulation algorithm. Fundam. Informaticae 108(1–2), 23–42 (2011). https://doi.org/10.3233/FI-2011-412

    Article  MathSciNet  Google Scholar 

  10. Fisler, K., Vardi, M.Y.: Bisimulation minimization and symbolic model checking. Formal Methods Syst. Des. 21(1), 39–78 (2002). https://doi.org/10.1023/A:1016091902809

    Article  Google Scholar 

  11. Gentilini, R., Piazza, C., Policriti, A.: From bisimulation to simulation: coarsest partition problems. J. Autom. Reason. 31(1), 73–103 (2003). https://doi.org/10.1023/A:1027328830731

    Article  MathSciNet  Google Scholar 

  12. van Glabbeek, R., Ploeger, B.: Correcting a space-efficient simulation algorithm. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 517–529. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-1_49

    Chapter  Google Scholar 

  13. Gratzer, G.A.: Lattice Theory: Foundation. Springer, Basel (2011)

    Book  Google Scholar 

  14. Grumberg, O., Long, D.E.: Model checking and modular verification. In: Baeten, J.C.M., Groote, J.F. (eds.) CONCUR 1991. LNCS, vol. 527, pp. 250–265. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54430-5_93

    Chapter  Google Scholar 

  15. Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans. Program. Lang. Syst. (TOPLAS) 16(3), 843–871 (1994). https://doi.org/10.1145/177492.177725

    Article  Google Scholar 

  16. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: SYNERGY: a new algorithm for property checking. In: Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE 2006, pp. 117–127. ACM (2006). https://doi.org/10.1145/1181775.1181790

  17. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite and infinite graphs. In: Proceedings of IEEE 36th Annual Foundations of Computer Science, FOCS 1995, pp. 453–462 (1995). https://doi.org/10.1109/SFCS.1995.492576

  18. Henzinger, T.A., Kopke, P.W.: Hybrid automata with finite mutual simulations. Technical report, TR-95-1497, Computer Science Department (1995)

    Google Scholar 

  19. Hofman, P., Lasota, S., Mayr, R., Totzke, P.: Simulation problems over one-counter nets. Log. Methods Comput. Sci. 12, 1–46 (2016). https://doi.org/10.2168/LMCS-12(1:6)2016

    Article  MathSciNet  Google Scholar 

  20. Kučera, A., Jančar, P.: Equivalence-checking on infinite-state systems: techniques and results. Theory Pract. Log. Program. 6(3), 227–264 (2006). https://doi.org/10.1017/S1471068406002651

    Article  MathSciNet  Google Scholar 

  21. Kucera, A., Mayr, R.: Simulation preorder over simple process algebras. Inf. Comput. 173(2), 184–198 (2002). https://doi.org/10.1006/inco.2001.3122

    Article  MathSciNet  Google Scholar 

  22. Kučera, A., Mayr, R.: Why is simulation harder than bisimulation? In: Brim, L., Křetínský, M., Kučera, A., Jančar, P. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 594–609. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45694-5_39

    Chapter  Google Scholar 

  23. Lee, D., Yannakakis, M.: Online minimization of transition systems. In: Proceedings of the 24th Annual ACM Symposium on Theory of Computing, STOC 1992, pp. 264–274. ACM (1992). https://doi.org/10.1145/129712.129738

  24. Loiseaux, C., Graf, S., Sifakis, J., Bouajjani, A., Bensalem, S.: Property preserving abstractions for the verification of concurrent systems. Formal Methods Syst. Des. 6(1), 11–44 (1995). https://doi.org/10.1007/BF01384313

    Article  Google Scholar 

  25. Majumdar, R., Ozay, N., Schmuck, A.K.: On abstraction-based controller design with output feedback. In: Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control, HSCC 2020, pp. 1–11. ACM (2020). https://doi.org/10.1145/3365365.3382219

  26. Păsăreanu, C.S., Pelánek, R., Visser, W.: Concrete model checking with abstract matching and refinement. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 52–66. Springer, Heidelberg (2005). https://doi.org/10.1007/11513988_7

    Chapter  Google Scholar 

  27. Ranzato, F.: A more efficient simulation algorithm on Kripke structures. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 753–764. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40313-2_66

    Chapter  Google Scholar 

  28. Ranzato, F.: An efficient simulation algorithm on Kripke structures. Acta Informatica 51(2), 107–125 (2014). https://doi.org/10.1007/s00236-014-0195-9

    Article  MathSciNet  Google Scholar 

  29. Ranzato, F., Tapparo, F.: A new efficient simulation equivalence algorithm. In: Proceedings of the 22nd IEEE Symposium on Logic in Computer Science, LICS 2007, pp. 171–180. IEEE Computer Society (2007). https://doi.org/10.1109/LICS.2007.8

  30. Ranzato, F., Tapparo, F.: An efficient simulation algorithm based on abstract interpretation. Inf. Comput. 208(1), 1–22 (2010). https://doi.org/10.1016/j.ic.2009.06.002

    Article  MathSciNet  Google Scholar 

  31. Tan, L., Cleaveland, R.: Simulation revisited. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 480–495. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45319-9_33

    Chapter  Google Scholar 

  32. van Glabbeek, R., Ploeger, B.: Five determinisation algorithms. In: Ibarra, O.H., Ravikumar, B. (eds.) CIAA 2008. LNCS, vol. 5148, pp. 161–170. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70844-5_17

    Chapter  Google Scholar 

  33. Yannakakis, M., Lee, D.: An efficient algorithm for minimizing real-time transition systems: extended abstract. Formal Methods Syst. Des. 11(2), 113–136 (1997). https://doi.org/10.1023/A:1008621829508

    Article  Google Scholar 

Download references

Acknowledgements

Francesco Ranzato was partially funded by: the Italian MUR, under the PRIN 2022 PNRR project no. P2022HXNSC; Meta (formerly Facebook) Research, under a “Probability and Programming Research Award” and under a WhatsApp Research Award on “Privacy-aware Program Analysis”; by an Amazon Research Award for “AWS Automated Reasoning”. Nicolas Manini is supported by the grant PIPF-2022/COM-24370, funded by the Madrid Regional Government. This publication is part of the grant PID2022-138072OB-I00, funded by MCIN/AEI/10.13039/501100011033/FEDER, UE and part of the PRODIGY Project (TED2021-132464B-I00) funded by MCIN/AEI/10.13039/501100011033/and the European Union NextGenerationEU/PRTR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Manini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ganty, P., Manini, N., Ranzato, F. (2024). Computing Reachable Simulations on Transition Systems. In: Kovács, L., Sokolova, A. (eds) Reachability Problems. RP 2024. Lecture Notes in Computer Science, vol 15050. Springer, Cham. https://doi.org/10.1007/978-3-031-72621-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72621-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72620-0

  • Online ISBN: 978-3-031-72621-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics