Abstract
This study addresses the challenging problem of active view selection and uncertainty quantification within the domain of Radiance Fields. Neural Radiance Fields (NeRF) have greatly advanced image rendering and reconstruction, but the cost of acquiring images poses the need to select the most informative viewpoints efficiently. Existing approaches depend on modifying the model architecture or hypothetical perturbation field to indirectly approximate the model uncertainty. However, selecting views from indirect approximation does not guarantee optimal information gain for the model. By leveraging Fisher Information, we directly quantify observed information on the parameters of Radiance Fields and select candidate views by maximizing the Expected Information Gain (EIG). Our method achieves state-of-the-art results on multiple tasks, including view selection, active mapping, and uncertainty quantification, demonstrating its potential to advance the field of Radiance Fields.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ash, J.T., Goel, S., Krishnamurthy, A., Kakade, S.M.: Gone fishing: neural active learning with fisher embeddings. In: NeurIPS, vol. abs/2106.09675 (2021)
Ash, J.T., Zhang, C., Krishnamurthy, A., Langford, J., Agarwal, A.: Deep batch active learning by diverse, uncertain gradient lower bounds. In: ICLR (2020). https://openreview.net/forum?id=ryghZJBKPS
Bajcsy, R.: Active perception. Proc. IEEE 76(8), 966–1005 (1988)
Bajcsy, R., Aloimonos, Y., Tsotsos, J.K.: Revisiting active perception. Auton. Robot. 42, 177–196 (2018)
Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-NeRF 360: unbounded anti-aliased neural radiance fields. In: CVPR (2022)
Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Zip-NeRF: anti-aliased grid-based neural radiance fields. In: ICCV (2023)
Chang, A., et al.: Matterport3D: learning from RGB-D data in indoor environments. In: International Conference on 3D Vision (2017)
Chaplot, D.S., Gandhi, D., Gupta, S., Gupta, A., Salakhutdinov, R.: Learning to explore using active neural slam. arXiv preprint arXiv:2004.05155 (2020)
Daxberger, E., Kristiadi, A., Immer, A., Eschenhagen, R., Bauer, M., Hennig, P.: Laplace redux–effortless Bayesian deep learning. In: NeurIPS (2021)
Dellaert, F., Yen-Chen, L.: Neural volume rendering: NeRF and beyond (2021)
Dhami, H., Sharma, V.D., Tokekar, P.: Pred-NBV: prediction-guided next-best-view planning for 3D object reconstruction. In: 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 7149–7154. IEEE (2023)
Dornhege, C., Kleiner, A.: A frontier-void-based approach for autonomous exploration in 3D. Adv. Robot. 27(6), 459–468 (2013)
Gao, K., Gao, Y., He, H., Lu, D., Xu, L., Li, J.: NeRF: neural radiance field in 3d vision, a comprehensive review (2023)
Georgakis, G., Bucher, B., Arapin, A., Schmeckpeper, K., Matni, N., Daniilidis, K.: Uncertainty-driven planner for exploration and navigation. In: 2022 International Conference on Robotics and Automation (ICRA), pp. 11295–11302. IEEE (2022)
Georgakis, G., Bucher, B., Arapin, A., Schmeckpeper, K., Matni, N., Daniilidis, K.: Uncertainty-driven planner for exploration and navigation. In: ICRA (2022)
Goli, L., Reading, C., Sellán, S., Jacobson, A., Tagliasacchi, A.: Bayes’ rays: uncertainty quantification in neural radiance fields. arXiv (2023)
Guédon, A., Monasse, P., Lepetit, V.: SCONE: surface coverage optimization in unknown environments by volumetric integration. Adv. Neural. Inf. Process. Syst. 35, 20731–20743 (2022)
Guédon, A., Monnier, T., Monasse, P., Lepetit, V.: MACARONS: mapping and coverage anticipation with RGB online self-supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 940–951 (2023)
Hinton, G.E., van Camp, D.: Keeping the neural networks simple by minimizing the description length of the weights. In: Proceedings of the Sixth Annual Conference on Computational Learning Theory, COLT 1993, pp. 5–13. Association for Computing Machinery, New York (1993). https://doi.org/10.1145/168304.168306
Hochreiter, S., Schmidhuber, J.: Simplifying neural nets by discovering flat minima. In: NeurIPS (1994)
Houlsby, N., Huszar, F., Ghahramani, Z., Lengyel, M.: Bayesian active learning for classification and preference learning. CoRR abs/1112.5745 (2011). http://dblp.uni-trier.de/db/journals/corr/corr1112.html#abs-1112-5745
Jin, L., Chen, X., Rückin, J., Popović, M.: NeU-NBV: next best view planning using uncertainty estimation in image-based neural rendering. arXiv preprint arXiv:2303.01284 (2023)
Karaman, S., Frazzoli, E.: Incremental sampling-based algorithms for optimal motion planning. Robot. Sci. Syst. VI 104(2), 267–274 (2010)
Keetha, N., et al.: SplaTAM: splat, track & map 3D gaussians for dense RGB-D SLAM. arXiv preprint arXiv:2312.02126 (2023)
Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D Gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. 42(4) (2023). https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
Kirsch, A., Amersfoort, J.v., Gal, Y.: BatchBALD: efficient and diverse batch acquisition for deep Bayesian active learning. In: NeurIPS (2019)
Kirsch, A., Farquhar, S., Atighehchian, P., Jesson, A., Branchaud-Charron, F., Gal, Y.: Stochastic batch acquisition for deep active learning. arXiv preprint arXiv:2106.12059 (2021)
Kirsch, A., Gal, Y.: Unifying approaches in active learning and active sampling via fisher information and information-theoretic quantities. Trans. Mach. Learn. Res. (2022). https://openreview.net/forum?id=UVDAKQANOW. Expert Certification
Kothawade, S.N., Beck, N.A., Killamsetty, K., Iyer, R.K.: SIMILAR: submodular information measures based active learning in realistic scenarios. In: Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems (2021). https://openreview.net/forum?id=VGDFaLNFFk
LaValle, S.: Rapidly-exploring random trees: a new tool for path planning. Research Report 9811 (1998)
Lee, S., Chen, L., Wang, J., Liniger, A., Kumar, S., Yu, F.: Uncertainty guided policy for active robotic 3D reconstruction using neural radiance fields. IEEE Robot. Autom. Lett. 7(4), 12070–12077 (2022)
Lindley, D.V.: On a measure of the information provided by an experiment. Ann. Math. Stat. 27(4), 986–1005 (1956). https://doi.org/10.1214/aoms/1177728069
Lluvia, I., Lazkano, E., Ansuategi, A.: Active mapping and robot exploration: a survey. Sensors 21(7), 2445 (2021)
MacDonald, L.E., Valmadre, J., Lucey, S.: On progressive sharpening, flat minima and generalisation (2023)
MacKay, D.J.C.: Bayesian interpolation. Neural Comput. 4(3), 415–447 (1992). https://doi.org/10.1162/neco.1992.4.3.415
Martin-Brualla, R., Radwan, N., Sajjadi, M.S.M., Barron, J.T., Dosovitskiy, A., Duckworth, D.: NeRF in the wild: neural radiance fields for unconstrained photo collections. In: CVPR (2021)
Matsuki, H., Murai, R., Kelly, P.H.J., Davison, A.J.: Gaussian splatting SLAM (2024)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: ECCV (2020)
Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P., Martin-Brualla, R., Barron, J.T.: MultiNeRF: a code release for Mip-NeRF 360, ref-NeRF, and RawNeRF (2022). https://github.com/google-research/multinerf
Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. 41(4), 102:1–102:15 (2022). https://doi.org/10.1145/3528223.3530127
Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-I. Math. Program. 14, 265–294 (1978)
Ortiz, J., et al.: iSDF: real-time neural signed distance fields for robot perception. In: Robotics: Science and Systems (2022)
Pan, X., Lai, Z., Song, S., Huang, G.: ActiveNeRF: learning where to see with uncertainty estimation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13693, pp. 230–246. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19827-4_14
Papachristos, C., Khattak, S., Alexis, K.: Uncertainty-aware receding horizon exploration and mapping using aerial robots. In: 2017 IEEE international conference on robotics and automation (ICRA), pp. 4568–4575. IEEE (2017)
Placed, J.A., et al.: A survey on active simultaneous localization and mapping: state of the art and new frontiers. IEEE Trans. Robot. (2023)
Ramakrishnan, S.K., Al-Halah, Z., Grauman, K.: Occupancy anticipation for efficient exploration and navigation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 400–418. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_24
Ramakrishnan, S.K., et al.: Habitat-matterport 3D dataset (HM3D): 1000 large-scale 3D environments for embodied AI. In: Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (2021)
Ran, Y., et al.: NeurAR: neural uncertainty for autonomous 3D reconstruction with implicit neural representations. IEEE Robot. Autom. Lett. 8(2), 1125–1132 (2023). https://doi.org/10.1109/lra.2023.3235686
Reiser, C., Peng, S., Liao, Y., Geiger, A.: KiloNeRF: speeding up neural radiance fields with thousands of tiny MLPs. In: ICCV (2021)
Ren, P., et al.: A survey of deep active learning. ACM Comput. Surv. (CSUR) 54(9), 1–40 (2021)
Sandström, E., Li, Y., Van Gool, L., Oswald, M.R.: Point-SLAM: dense neural point cloud-based SLAM. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 18433–18444 (2023)
Sara Fridovich-Keil and Alex Yu, Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: radiance fields without neural networks. In: CVPR (2022)
Savva, M., et al.: Habitat: a platform for embodied AI research. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)
Schervish, M.: Theory of Statistics. Springer Series in Statistics. Springer, New York (2012). https://books.google.com/books?id=s5LHBgAAQBAJ
Shen, J., Agudo, A., Moreno-Noguer, F., Ruiz, A.: Conditional-flow NeRF: accurate 3D modelling with reliable uncertainty quantification. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13663, pp. 540–557. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20062-5_31
Shen, J., Ruiz, A., Agudo, A., Moreno-Noguer, F.: Stochastic neural radiance fields: quantifying uncertainty in implicit 3D representations. CoRR abs/2109.02123 (2021). https://arxiv.org/abs/2109.02123
Shen, S., Michael, N., Kumar, V.: Autonomous indoor 3D exploration with a micro-aerial vehicle. In: 2012 IEEE International Conference on Robotics and Automation, pp. 9–15. IEEE (2012)
Smith, S., Le, Q.V.: A Bayesian perspective on generalization and stochastic gradient descent. In: ICLR (2018). https://openreview.net/pdf?id=BJij4yg0Z
Sucar, E., Liu, S., Ortiz, J., Davison, A.: iMAP: implicit mapping and positioning in real-time. In: Proceedings of the International Conference on Computer Vision (ICCV) (2021)
Sun, C., Sun, M., Chen, H.T.: Direct voxel grid optimization: super-fast convergence for radiance fields reconstruction. In: CVPR (2022)
Sünderhauf, N., Abou-Chakra, J., Miller, D.: Density-aware NeRF ensembles: quantifying predictive uncertainty in neural radiance fields. In: ICRA (2023)
Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: NeurIPS, vol. 2, pp. 1398–1402. IEEE (2003)
Xia, F., Zamir, A.R., He, Z., Sax, A., Malik, J., Savarese, S.: Gibson ENV: real-world perception for embodied agents. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9068–9079 (2018)
Yamauchi, B.: A frontier-based approach for autonomous exploration. In: Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA 1097. Towards New Computational Principles for Robotics and Automation, pp. 146–151. IEEE (1997)
Yan, C., et al.: GS-SLAM: dense visual slam with 3D gaussian splatting. arXiv preprint arXiv:2311.11700 (2023)
Yan, D., Liu, J., Quan, F., Chen, H., Fu, M.: Active implicit object reconstruction using uncertainty-guided next-best-view optimization (2023)
Yan, Z., Yang, H., Zha, H.: Active neural mapping. In: ICCV (2023)
Ye, K., et al.: Multi-robot active mapping via neural bipartite graph matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14839–14848 (2022)
Yücer, K., Sorkine-Hornung, A., Wang, O., Sorkine-Hornung, O.: Efficient 3D object segmentation from densely sampled light fields with applications to 3D reconstruction. ACM Trans. Graph. 35(3) (2016).https://doi.org/10.1145/2876504
Yugay, V., Li, Y., Gevers, T., Oswald, M.R.: Gaussian-SLAM: photo-realistic dense slam with gaussian splatting (2023)
Zhan, H., Zheng, J., Xu, Y., Reid, I., Rezatofighi, H.: ActiverMap: radiance field for active mapping and planning (2022)
Zhan, X., Wang, Q., Hao Huang, K., Xiong, H., Dou, D., Chan, A.B.: A comparative survey of deep active learning (2022)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR, pp. 586–595 (2018)
Zhu, C., Ding, R., Lin, M., Wu, Y.: A 3D frontier-based exploration tool for MAVs. In: 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 348–352. IEEE (2015)
Zhu, Z., et al.: Nice-SLAM: neural implicit scalable encoding for SLAM (2021)
Acknowledgements
The authors gratefully appreciate support through the following grants: NSF FRR 2220868, NSF IIS-RI 2212433, NSF TRIPODS 1934960, NSF CPS 2038873. The authors thank Pratik Chaudhari for the insightful discussion and Yinshuang Xu for proofreading the drafts.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jiang, W., Lei, B., Daniilidis, K. (2025). FisherRF: Active View Selection and Mapping with Radiance Fields Using Fisher Information. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15071. Springer, Cham. https://doi.org/10.1007/978-3-031-72624-8_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-72624-8_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72623-1
Online ISBN: 978-3-031-72624-8
eBook Packages: Computer ScienceComputer Science (R0)