Abstract
Recently, implicit neural representations (INRs) have attracted increasing attention for multi-dimensional data recovery. However, INRs simply map coordinates via a multi-layer perceptron (MLP) to corresponding values, ignoring the inherent semantic information of the data. To leverage semantic priors from the data, we propose a novel Superpixel-informed INR (S-INR). Specifically, we suggest utilizing generalized superpixel instead of pixel as an alternative basic unit of INR for multi-dimensional data (e.g., images and weather data). The coordinates of generalized superpixels are first fed into exclusive attention-based MLPs, and then the intermediate results interact with a shared dictionary matrix. The elaborately designed modules in S-INR allow us to ingenuously exploit the semantic information within and across generalized superpixels. Extensive experiments on various applications validate the effectiveness and efficacy of our S-INR compared to state-of-the-art INR methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For point data, pixels correspond to a feature value vector.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
Specifically, the superpixel-based INR is based on using K INRs to represent K superpixels, where K is the number of generalized superpixels.
References
Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992)
Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1027–1035 (2007)
Ben-Shabat, Y., Koneputugodage, C.H., Gould, S.: DiGS: divergence guided shape implicit neural representation for unoriented point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2022, pp. 19323–19332 (2022)
Cervantes, P., Sekikawa, Y., Sato, I., Shinoda, K.: Implicit neural representations for variable length human motion generation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision, ECCV 2022. LNCS, vol. 13677, pp. 356–372. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19790-1_22
Chen, H., He, B., Wang, H., Ren, Y., Lim, S.N., Shrivastava, A.: NeRV: neural representations for videos. In: Proceedings of the International Conference on Neural Information Processing Systems (NeurIPS), vol. 34, pp. 21557–21568 (2021)
Chen, Y., Liu, S., Wang, X.: Learning continuous image representation with local implicit image function. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2021, pp. 8628–8638 (2021)
Davis, J., Nehab, D., Ramamoorthi, R., Rusinkiewicz, S.: Spacetime stereo: a unifying framework for depth from triangulation. IEEE Trans. Pattern Anal. Mach. Intell. 27(2), 296–302 (2005)
Fathony, R., Sahu, A.K., Willmott, D., Kolter, J.Z.: Multiplicative filter networks. In: Proceedings of the International Conference on Learning Representations (ICLR) (2021)
Fujiwara, K., Hashimoto, T.: Neural implicit embedding for point cloud analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020, pp. 11734–11743 (2020)
Henzler, P., Mitra, N.J., Ritschel, T.: Learning a neural 3D texture space from 2D exemplars. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020, pp. 8353–8361 (2020)
Ho, T.K.: Random decision forests. In: Proceedings of 3rd International Conference on Document Analysis and Recognition (ICDAR), vol. 1, pp. 278–282 (1995)
Hofherr, F., Koestler, L., Bernard, F., Cremers, D.: Neural implicit representations for physical parameter inference from a single video. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), January 2023, pp. 2093–2103 (2023)
Hong, S., et al.: Neural matching fields: implicit representation of matching fields for visual correspondence. In: Proceedings of the International Conference on Neural Information Processing Systems (NeurIPS), vol. 35, pp. 13512–13526 (2022)
Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-Excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 42(8), 2011–2023 (2020)
Hunt, E.B., Marin, J., Stone, P.J.: Experiments in induction (1966)
Huynh-Thu, Q., Ghanbari, M.: Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 44, 800–801 (2008)
Jacot, A., Gabriel, F., Hongler, C.: Neural tangent kernel: convergence and generalization in neural networks. In: Proceedings of the International Conference on Neural Information Processing Systems (NeurIPS), vol. 31, p. 6 (2018)
Jayasundara, V., Agrawal, A., Heron, N., Shrivastava, A., Davis, L.S.: FlexNeRF: photorealistic free-viewpoint rendering of moving humans from sparse views. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2023, pp. 21118–21127 (2023)
Kaneko, T.: MIMO-NeRF: fast neural rendering with multi-input multi-output neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2023, pp. 3273–3283 (2023)
Kazerouni, A., Azad, R., Hosseini, A., Merhof, D., Bagci, U.: INCODE: implicit neural conditioning with prior knowledge embeddings. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), January 2024, pp. 1298–1307 (2024)
Khan, M.O., Fang, Y.: Implicit neural representations for medical imaging segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention, MICCAI 2022. LNCS, vol. 13435, pp. 433–443. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_42
Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the International Conference on Learning Representations (ICLR), May 2015, p. 13 (2015)
Lindell, D.B., Van Veen, D., Park, J.J., Wetzstein, G.: BACON: band-limited coordinate networks for multiscale scene representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2022, pp. 16252–16262 ()
Lu, Y., Wang, Z., Liu, M., Wang, H., Wang, L.: Learning spatial-temporal implicit neural representations for event-guided video super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2023, pp. 1557–1567 (2023)
Ma, C., Yu, P., Lu, J., Zhou, J.: Recovering realistic details for magnification-arbitrary image super-resolution. IEEE Trans. Image Process. 31, 3669–3683 (2022)
Mai, L., Liu, F.: Motion-adjustable neural implicit video representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2022, pp. 10738–10747 (2022)
Martel, J.N.P., Lindell, D.B., Lin, C.Z., Chan, E.R., Monteiro, M., Wetzstein, G.: ACORN: adaptive coordinate networks for neural scene representation. ACM Trans. Graph. 40(4), 1–13 (2021)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24
Oechsle, M., Mescheder, L., Niemeyer, M., Strauss, T., Geiger, A.: Texture fields: learning texture representations in function space. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019, pp. 4531–4540 ()
Rahaman, N., et al.: On the spectral bias of neural networks. In: Proceedings of the 36th International Conference on Machine Learning (ICML), June 2019, vol. 97, pp. 5301–5310 (2019)
Ramasinghe, S., Lucey, S.: Beyond periodicity: towards a unifying framework for activations in coordinate-MLPs. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision, ECCV 2022. LNCS, vol. 13693, pp. 142–158. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19827-4_9
Rebain, D., Jiang, W., Yazdani, S., Li, K., Yi, K.M., Tagliasacchi, A.: DeRF: decomposed radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2021, pp. 14153–14161 (2021)
Reed, A.W., et al.: Dynamic CT reconstruction from limited views with implicit neural representations and parametric motion fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2021, pp. 2258–2268 (2021)
Reiser, C., Peng, S., Liao, Y., Geiger, A.: KiloNeRF: speeding up neural radiance fields with thousands of tiny mlps. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2021, pp. 14335–14345 (2021)
Saragadam, V., LeJeune, D., Tan, J., Balakrishnan, G., Veeraraghavan, A., Baraniuk, R.G.: WIRE: wavelet implicit neural representations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2023, pp. 18507–18516 (2023)
Saragadam, V., Tan, J., Balakrishnan, G., Baraniuk, R.G., Veeraraghavan, A.: MINER: multiscale implicit neural representation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision, ECCV 2022. LNCS, vol. 13683, pp. 318–333. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20050-2_19
Serrano, D., Szymkowiak, J., Musialski, P.: HOSC: a periodic activation function for preserving sharp features in implicit neural representations (2024)
Shen, Z., Cheng, Y., Chan, R.H., Liò, P., Schönlieb, C.B., Aviles-Rivero, A.I.: TRIDENT: the nonlinear trilogy for implicit neural representations (2023)
Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural representations with periodic activation functions. In: Proceedings of the International Conference on Neural Information Processing Systems (NeurIPS), vol. 33, pp. 7462–7473 (2020)
Su, K., Chen, M., Shlizerman, E.: INRAS: implicit neural representation for audio scenes. In: Proceedings of the International Conference on Neural Information Processing Systems (NeurIPS), vol. 35, pp. 8144–8158 (2022)
Sun, Y., Liu, J., Xie, M., Wohlberg, B., Kamilov, U.S.: CoIL: coordinate-based internal learning for tomographic imaging. IEEE Trans. Computat. Imaging 7, 1400–1412 (2021)
Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. In: Proceedings of the International Conference on Neural Information Processing Systems (NeurIPS), vol. 33, pp. 7537–7547 (2020)
Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018, pp. 9446–9454 (2018)
Strümpler, Y., Postels, J., Yang, R., Gool, L.V., Tombari, F.: Implicit neural representations for image compression. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision, ECCV 2022. LNCS, vol. 13686, pp. 74–91. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19809-0_5
Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Xiang, F., Xu, Z., Hašan, M., Hold-Geoffroy, Y., Sunkavalli, K., Su, H.: NeuTex: neural texture mapping for volumetric neural rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2021, pp. 7119–7128 (2021)
Xu, D., Wang, P., Jiang, Y., Fan, Z., Wang, Z.: Signal processing for implicit neural representations. In: Proceedings of the International Conference on Neural Information Processing Systems (NeurIPS), vol. 35, pp. 13404–13418 (2022)
Xu, R., Yao, M., Chen, C., Wang, L., Xiong, Z.: Continuous spectral reconstruction from RGB images via implicit neural representation. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds.) Computer Vision, ECCV 2022 Workshops. LNCS, vol 13805, pp. 78–94. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25072-9_6
Xu, W., Jiao, J.: Revisiting implicit neural representations in low-level vision. In: International Conference on Learning Representations Workshop (2023)
Yang, L., Kim, B., Zoss, G., Gözcü, B., Gross, M., Solenthaler, B.: Implicit neural representation for physics-driven actuated soft bodies. ACM Trans. Graph. 41(4) (2022)
Yang, S., Ding, M., Wu, Y., Li, Z., Zhang, J.: Implicit neural representation for cooperative low-light image enhancement. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2023, pp. 12918–12927 (2023)
Zhang, K., Zhu, D., Min, X., Zhai, G.: Implicit neural representation learning for hyperspectral image super-resolution. IEEE Trans. Geosci. Remote Sens. 61, 1–12 (2023)
Zhao, Q., Asif, M.S., Ma, Z.: DNeRV: modeling inherent dynamics via difference neural representation for videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2023, pp. 2031–2040 (2023)
Acknowledgments
This research is supported by NSFC (No. 12371456, 12171-072, 62131005, 62306248), Sichuan Science and Technology Program (No. 2024NSFJQ0038, 2023ZYD0007), and National Key Research and Development Program of China (No. 2020YFA0714001).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, J., Zhao, X., Wang, J., Wang, C., Wang, M. (2025). Superpixel-Informed Implicit Neural Representation for Multi-dimensional Data. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15060. Springer, Cham. https://doi.org/10.1007/978-3-031-72627-9_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-72627-9_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72626-2
Online ISBN: 978-3-031-72627-9
eBook Packages: Computer ScienceComputer Science (R0)