Abstract
Generating realistic human motion is crucial for many computer vision and graphics applications. The rich diversity of human body shapes and sizes significantly influences how people move. However, existing motion models typically overlook these differences, using a normalized, average body instead. This results in a homogenization of motion across human bodies, with motions not aligning with their physical attributes, thus limiting diversity. To address this, we propose a novel approach to learn a generative motion model conditioned on body shape. We demonstrate that it is possible to learn such a model from unpaired training data using cycle consistency, intuitive physics, and stability constraints that model the correlation between identity and movement. The resulting model produces diverse, physically plausible, and dynamically stable human motions that are quantitatively and qualitatively more realistic than existing state of the art. More details are available on our project page https://github.com/CarstenEpic/humos.
S. Tripathi—work done during an internship at Epic Games.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
All datasets were obtained and used only by the authors affiliated with academic institutions.
References
Abdul-Massih, M., Yoo, I., Benes, B.: Motion style retargeting to characters with different morphologies. Comput. Graph. Forum 36(6), 86–99 (2017). https://doi.org/10.1111/cgf.12860, https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12860
Aberman, K., Li, P., Lischinski, D., Sorkine-Hornung, O., Cohen-Or, D., Chen, B.: Skeleton-aware networks for deep motion retargeting. ACM Trans. Graph. 39(4), 62:1–62:14 (2020). https://doi.org/10.1145/3386569.3392462, https://doi.org/10.1145/3386569.3392462
Aberman, K., Wu, R., Lischinski, D., Chen, B., Cohen-Or, D.: Learning character-agnostic motion for motion retargeting in 2D. ACM Trans. Graph. 38(4), 1–14 (2019). https://doi.org/10.1145/3306346.3322999, http://dx.doi.org/10.1145/3306346.3322999
Ahn, H., Ha, T., Choi, Y., Yoo, H., Oh, S.: Text2Action: Generative adversarial synthesis from language to action. In: International Conference on Robotics and Automation (ICRA) (2018)
Ahuja, C., Morency, L.P.: Language2Pose: natural language grounded pose forecasting. In: 2019 International Conference on 3D Vision (3DV), pp. 719–728. IEEE (2019)
Aksan, E., Kaufmann, M., Hilliges, O.: Structured prediction helps 3D human motion modelling. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7144–7153 (2019)
Aliakbarian, S., Saleh, F.S., Salzmann, M., Petersson, L., Gould, S.: A stochastic conditioning scheme for diverse human motion prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5223–5232 (2020)
Athanasiou, N., Petrovich, M., Black, M.J., Varol, G.: TEACH: temporal action composition for 3D humans. In: 3DV, pp. 414–423. IEEE (2022)
Athanasiou, N., Petrovich, M., Black, M.J., Varol, G.: SINC: Spatial composition of 3D human motions for simultaneous action generation. In: Proceedings of International Conference on Computer Vision (ICCV), pp. 9984–9995 (2023)
Bao, F., Li, C., Sun, J., Zhu, J., Zhang, B.: Estimating the optimal covariance with imperfect mean in diffusion probabilistic models. In: International Conference on Machine Learning (2022)
Bao, F., Li, C., Zhu, J., Zhang, B.: Analytic-DPM: an analytic estimate of the optimal reverse variance in diffusion probabilistic models. In: International Conference on Learning Representations (2022)
Barsoum, E., Kender, J., Liu, Z.: HP-GAN: probabilistic 3D human motion prediction via GAN. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1418–1427 (2018)
Basset, J., Wuhrer, S., Boyer, E., Multon, F.: Contact preserving shape transfer for rigging-free motion retargeting. In: Proceedings of the 12th ACM SIGGRAPH Conference on Motion, Interaction and Games. MIG ’19, Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3359566.3360075
Bergamin, K., Clavet, S., Holden, D., Forbes, J.R.: DReCon: data-driven responsive control of physics-based characters. ACM Trans. Graph. (TOG) 38(6), 1–11 (2019)
Bhattacharya, U., Childs, E., Rewkowski, N., Manocha, D.: Speech2AffectiveGestures: synthesizing co-speech gestures with generative adversarial affective expression learning. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 2027–2036 (2021)
Bhattacharya, U., Rewkowski, N., Banerjee, A., Guhan, P., Bera, A., Manocha, D.: Text2Gestures: a transformer-based network for generating emotive body gestures for virtual agents. In: 2021 IEEE Virtual Reality and 3D User Interfaces (VR), pp. 1–10. IEEE (2021)
Celikcan, U., Yaz, I.O., Capin, T.: Example-based retargeting of human motion to arbitrary mesh models. Comput. Graph. Forum 34(1), 216–227 (2015). https://doi.org/10.1111/cgf.12507, https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12507
Chen, X., Jiang, B., Liu, W., Huang, Z., Fu, B., Chen, T., Yu, G.: Executing your commands via motion diffusion in latent space. In: CVPR, pp. 18000–18010. IEEE (2023)
Choi, J., Kim, S., Jeong, Y., Gwon, Y., Yoon, S.: ILVR: Conditioning method for denoising diffusion probabilistic models. arXiv preprint arXiv:2108.02938 (2021)
Choi, K.J., Ko, H.S.: On-line motion retargetting. In: Proceedings of Seventh Pacific Conference on Computer Graphics and Applications (Cat. No.PR00293), pp. 32–42 (1999). https://doi.org/10.1109/PCCGA.1999.803346
Dhariwal, P., Nichol, A.Q.: Diffusion models beat GANs on image synthesis. In: Advances in Neural Information Processing Systems (2021)
Dockhorn, T., Vahdat, A., Kreis, K.: GENIE: higher-order denoising diffusion solvers. In: Advances in Neural Information Processing Systems (2022)
Fragkiadaki, K., Levine, S., Felsen, P., Malik, J.: Recurrent network models for human dynamics. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4346–4354 (2015)
Fussell, L., Bergamin, K., Holden, D.: SuperTrack: motion tracking for physically simulated characters using supervised learning. ACM Trans. Graph. 40(6), 1–13 (2021). https://doi.org/10.1145/3478513.3480527
Geman, S.: Statistical methods for tomographic image restoration. Bull. Internat. Statist. Inst. 52, 5–21 (1987)
Ghosh, A., Cheema, N., Oguz, C., Theobalt, C., Slusallek, P.: Synthesis of compositional animations from textual descriptions. In: International Conference on Computer Vision (ICCV) (2021)
Ghosh, P., Song, J., Aksan, E., Hilliges, O.: Learning human motion models for long-term predictions. In: 2017 International Conference on 3D Vision (3DV), pp. 458–466. IEEE (2017)
Ginosar, S., Bar, A., Kohavi, G., Chan, C., Owens, A., Malik, J.: Learning individual styles of conversational gesture. In: Computer Vision and Pattern Recognition (CVPR) (2019)
Gomes, T., Martins, R., Ferreira, J., Azevedo, R., Torres, G., Nascimento, E.: A shape-aware retargeting approach to transfer human motion and appearance in monocular videos. Int. J. Comput. Vision 129(7), 2057–2075 (2021). https://doi.org/10.1007/s11263-021-01471-x, https://inria.hal.science/hal-03257490, 19 pages, 13 figures
Gopalakrishnan, A., Mali, A., Kifer, D., Giles, L., Ororbia, A.G.: A neural temporal model for human motion prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12116–12125 (2019)
Grenander, U., Miller, M.I.: Representations of knowledge in complex systems. J. Roy. Stat. Soc.: Ser. B (Methodol.) 56(4), 549–581 (1994)
Guo, C., et al.: Generating diverse and natural 3D human motions from text. In: Computer Vision and Pattern Recognition (CVPR), pp. 5152–5161 (2022)
Guo, C., et al.: Action2Motion: conditioned generation of 3D human motions. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 2021–2029 (2020)
Habibie, I., Holden, D., Schwarz, J., Yearsley, J., Komura, T.: A recurrent variational autoencoder for human motion synthesis. In: British Machine Vision Conference (BMVC) (2017)
He, C., Saito, J., Zachary, J., Rushmeier, H.E., Zhou, Y.: NeMF: neural motion fields for kinematic animation. In: NeurIPS (2022)
Holden, D., Saito, J., Komura, T.: A deep learning framework for character motion synthesis and editing. ACM Trans. Graph. (TOG) 35(4), 1–11 (2016)
Hoyet, L., McDonnell, R., O’Sullivan, C.: Push it real: perceiving causality in virtual interactions. ACM Trans. Graph. 31(4), 90:1–90:9 (2012)
Kang, H.j., et al.: Realization of biped walking on uneven terrain by new foot mechanism capable of detecting ground surface. In: 2010 IEEE International Conference on Robotics and Automation, pp. 5167–5172 (2010). https://doi.org/10.1109/ROBOT.2010.5509348
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR (2014)
Kondak, K., Hommel, G.: Control and online computation of stable movement for biped robots. IEEE/RSJ Int. Conf. Intell. Robot. Syst. 1, 874–879 (2003)
Lee, H., Yang, X., Liu, M., Wang, T., Lu, Y., Yang, M., Kautz, J.: Dancing to music. In: Neural Information Processing Systems (NeurIPS) (2019)
Lee, S., Kang, T., Park, J., Lee, J., Won, J.: SAME: skeleton-agnostic motion embedding for character animation. In: SIGGRAPH Asia 2023 Conference Papers. SA ’23, Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3610548.3618206
Li, B., Zhao, Y., Zhelun, S., Sheng, L.: DanceFormer: music conditioned 3D dance generation with parametric motion transformer. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 36, pp. 1272–1279 (2022)
Li, J., Yin, Y., Chu, H., Zhou, Y., Wang, T., Fidler, S., Li, H.: Learning to generate diverse dance motions with transformer. arXiv preprint arXiv:2008.08171 (2020)
Li, R., Yang, S., Ross, D.A., Kanazawa, A.: AI choreographer: music conditioned 3D dance generation with AIST++. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13401–13412 (2021)
Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: A skinned multi-person linear model. Trans. Graph. (TOG) 34(6), 248:1–248:16 (2015)
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: ICLR (2017). https://api.semanticscholar.org/CorpusID:53592270
Mahmood, N., Ghorbani, N., F. Troje, N., Pons-Moll, G., Black, M.J.: AMASS: archive of motion capture as surface shapes. In: International Conference on Computer Vision (ICCV), pp. 5441–5450 (2019)
Makoviychuk, V., et al.: Isaac gym: high performance GPU based physics simulation for robot learning. In: Vanschoren, J., Yeung, S. (eds.) Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual (2021). https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/28dd2c7955ce926456240b2ff0100bde-Abstract-round2.html
Motion builder. https://www.autodesk.com/products/motionbuilder/overview
Peng, X.B., Abbeel, P., Levine, S., van de Panne, M.: DeepMimic: example-guided deep reinforcement learning of physics-based character skills. ACM Trans. Graph. (TOG) 37(4), 1–14 (2018)
Peng, X.B., Kanazawa, A., Malik, J., Abbeel, P., Levine, S.: SFV: reinforcement learning of physical skills from videos. ACM Trans. Graph. (TOG) 37(6), 1–14 (2018)
Peng, X.B., van de Panne, M.: Learning locomotion skills using DeepRL: does the choice of action space matter? In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 1–13 (2017)
Petrovich, M., Black, M.J., Varol, G.: Action-conditioned 3D human motion synthesis with transformer VAE. In: ICCV, pp. 10965–10975. IEEE (2021)
Petrovich, M., Black, M.J., Varol, G.: TEMOS: generating diverse human motions from textual descriptions. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022. ECCV 2022. LNCS, vol. 13682. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20047-2_28
Popovic, M.B., Goswami, A., Herr, H.: Ground reference points in legged locomotion: definitions, biological trajectories and control implications. Int. J. Robot. Res. 24(10), 1013–1032 (2005)
Regateiro, J., Boyer, E.: Temporal shape transfer network for 3D human motion. In: 2022 International Conference on 3D Vision (3DV), pp. 424–432 (2022). https://doi.org/10.1109/3DV57658.2022.00054
Reitsma, P.S.A., Pollard, N.S.: Perceptual metrics for character animation: sensitivity to errors in ballistic motion. ACM Trans. Graph. 22(3), 537–542 (2003)
Rempe, D., Birdal, T., Hertzmann, A., Yang, J., Sridhar, S., Guibas, L.J.: HuMoR: 3D human motion model for robust pose estimation. In: International Conference on Computer Vision (ICCV), pp. 11468–11479. IEEE (2021)
Ren, Z., Pan, Z., Zhou, X., Kang, L.: Diffusion motion: Generate text-guided 3D human motion by diffusion model. arXiv preprint arXiv:2210.12315 (2022)
Rokoko. https://www.rokoko.com/
Rokoko: Rokoko studio live plugin for blender. https://github.com/Rokoko/rokoko-studio-live-blender (2023)
Schulman, J., Moritz, P., Levine, S., Jordan, M.I., Abbeel, P.: High-dimensional continuous control using generalized advantage estimation. In: Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings (2016)
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)
Shimada, S., Golyanik, V., Xu, W., Pérez, P., Theobalt, C.: Neural monocular 3D human motion capture with physical awareness. ACM Trans. Graph. (ToG) 40(4), 1–15 (2021)
Shimada, S., Golyanik, V., Xu, W., Theobalt, C.: PhysCap: physically plausible monocular 3D motion capture in real time. ACM Trans. Graph. (TOG) 39(6), 235 (2020)
Taheri, O., Choutas, V., Black, M.J., Tzionas, D.: GOAL: generating 4D whole-body motion for hand-object grasping. In: Computer Vision and Pattern Recognition (CVPR), pp. 13253–13263 (2022)
Tevet, G., Raab, S., Gordon, B., Shafir, Y., Cohen-Or, D., Bermano, A.H.: Human motion diffusion model. In: ICLR. OpenReview.net (2023)
Tripathi, S., Müller, L., Huang, C.H.P., Omid, T., Black, M.J., Tzionas, D.: 3D human pose estimation via intuitive physics. In: Computer Vision and Pattern Recognition (CVPR), pp. 4713–4725 (2023). https://ipman.is.tue.mpg.de
Vaswani, A., et al.: Attention is all you need. In: NeurIPS. vol. 30 (2017)
Villegas, R., Ceylan, D., Hertzmann, A., Yang, J., Saito, J.: Contact-aware retargeting of skinned motion. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9700–9709 (2021). https://doi.org/10.1109/ICCV48922.2021.00958
Vukobratović, M., Borovac, B.: Zero-moment point-thirty five years of its life. In: International Journal of Humanoid Robotics, pp. 157–173 (2004)
Wang, J., et al.: Neural pose transfer by spatially adaptive instance normalization. CoRR abs/2003.07254 (2020). https://arxiv.org/abs/2003.07254
Won, J., Gopinath, D., Hodgins, J.: A scalable approach to control diverse behaviors for physically simulated characters. ACM Trans. Graph. (TOG) 39(4), 33:1-33:12 (2020)
Yamane, K., Ariki, Y., Hodgins, J.: Animating non-humanoid characters with human motion data. In: Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 169–178. SCA ’10, Eurographics Association, Goslar, DEU (2010)
Yi, X., et al.: Physical inertial poser (PIP): physics-aware real-time human motion tracking from sparse inertial sensors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13167–13178 (2022)
Yuan, Y., Kitani, K.: DLow: diversifying latent flows for diverse human motion prediction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 346–364. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_20
Yuan, Y., Kitani, K.: Residual force control for agile human behavior imitation and extended motion synthesis. In: Advances in Neural Information Processing Systems (2020)
Yuan, Y., Song, J., Iqbal, U., Vahdat, A., Kautz, J.: PhysDiff: physics-guided human motion diffusion model. In: ICCV, pp. 15964–15975. IEEE (2023)
Yuan, Y., Wei, S.E., Simon, T., Kitani, K., Saragih, J.: SimPoE: simulated character control for 3D human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)
Zell, P., Wandt, B., Rosenhahn, B.: Joint 3D human motion capture and physical analysis from monocular videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 17–26 (2017)
Zhang, J., et al.: Skinned motion retargeting with residual perception of motion semantics & geometry. In: 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13864–13872 (2023). https://doi.org/10.1109/CVPR52729.2023.01332
Zhang, M., et al.: MotionDiffuse: Text-driven human motion generation with diffusion model. arXiv preprint arXiv:2208.15001 (2022)
Zhou, K., Bhatnagar, B.L., Pons-Moll, G.: Unsupervised shape and pose disentanglement for 3D meshes. CoRR abs/2007.11341 (2020), https://arxiv.org/abs/2007.11341
Zhou, Y., Barnes, C., Lu, J., Yang, J., Li, H.: On the continuity of rotation representations in neural networks. In: CVPR, pp. 5745–5753. Computer Vision Foundation/IEEE (2019)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV, pp. 2223–2232 (2017)
Acknowledgements
We sincerely thank Tsvetelina Alexiadis, Alpar Cseke, Tomasz Niewiadomski, and Taylor McConnell for facilitating the perceptual study, and Giorgio Becherini for his help with the Rokoko baseline. We are grateful to Iain Matthews, Brian Karis, Nikos Athanasiou, Markos Diomataris, and Mathis Petrovich for valuable discussions and advice. Their invaluable contributions enriched this research significantly.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Tripathi, S., Taheri, O., Lassner, C., Black, M., Holden, D., Stoll, C. (2025). HUMOS: Human Motion Model Conditioned on Body Shape. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15074. Springer, Cham. https://doi.org/10.1007/978-3-031-72640-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-72640-8_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72639-2
Online ISBN: 978-3-031-72640-8
eBook Packages: Computer ScienceComputer Science (R0)