Abstract
Recent breakthroughs in Neural Radiance Fields (NeRFs) have sparked significant demand for their integration into real-world 3D applications. However, the varied functionalities required by different 3D applications often necessitate diverse NeRF models with various pipelines, leading to tedious NeRF training for each target task and cumbersome trial-and-error experiments. Drawing inspiration from the generalization capability and adaptability of emerging foundation models, our work aims to develop one general-purpose NeRF for handling diverse 3D tasks. We achieve this by proposing a framework called Omni-Recon, which is capable of (1) generalizable 3D reconstruction and zero-shot multitask scene understanding, and (2) adaptability to diverse downstream 3D applications such as real-time rendering and scene editing. Our key insight is that an image-based rendering pipeline, with accurate geometry and appearance estimation, can lift 2D image features into their 3D counterparts, thus extending widely explored 2D tasks to the 3D world in a generalizable manner. Specifically, our Omni-Recon features a general-purpose NeRF model using image-based rendering with two decoupled branches: one complex transformer-based branch that progressively fuses geometry and appearance features for accurate geometry estimation, and one lightweight branch for predicting blending weights of source views. This design achieves state-of-the-art (SOTA) generalizable 3D surface reconstruction quality with blending weights reusable across diverse tasks for zero-shot multitask scene understanding. In addition, it can enable real-time rendering after baking the complex geometry branch into meshes, swift adaptation to achieve SOTA generalizable 3D understanding performance, and seamless integration with 2D diffusion models for text-guided 3D editing. Our code is available at: https://github.com/GATECH-EIC/Omni-Recon.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aanæs, H., Jensen, R.R., Vogiatzis, G., Tola, E., Dahl, A.B.: Large-scale data for multiple-view stereopsis. Int. J. Comput. Vision 120, 153–168 (2016)
Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan, P.P.: Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5855–5864 (2021)
Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-nerf 360: Unbounded anti-aliased neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5470–5479 (2022)
Brooks, T., Holynski, A., Efros, A.A.: Instructpix2pix: Learning to follow image editing instructions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18392–18402 (2023)
Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)
Cao, A., Johnson, J.: Hexplane: a fast representation for dynamic scenes. arXiv preprint arXiv:2301.09632 (2023)
Chan, E.R., Monteiro, M., Kellnhofer, P., Wu, J., Wetzstein, G.: pi-GAN: periodic implicit generative adversarial networks for 3D-aware image synthesis. CVPR (2021)
Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: Tensorf: tensorial radiance fields. arXiv preprint arXiv:2203.09517 (2022)
Chen, A., Xu, Z., Wei, X., Tang, S., Su, H., Geiger, A.: Factor fields: unified framework for neural fields and beyond. arXiv preprint arXiv:2302.01226 (2023)
Chen, A., Xu, Z., Zhao, F., Zhang, X., Xiang, F., Yu, J., Su, H.: Mvsnerf: Fast generalizable radiance field reconstruction from multi-view stereo. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14124–14133 (2021)
Chen, T., Wang, P., Fan, Z., Wang, Z.: Aug-nerf: Training stronger neural radiance fields with triple-level physically-grounded augmentations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15191–15202 (2022)
Chen, Z., Funkhouser, T., Hedman, P., Tagliasacchi, A.: Mobilenerf: exploiting the polygon rasterization pipeline for efficient neural field rendering on mobile architectures. arXiv preprint arXiv:2208.00277 (2022)
Chibane, J., Bansal, A., Lazova, V., Pons-Moll, G.: Stereo radiance fields (srf): Learning view synthesis for sparse views of novel scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7911–7920 (2021)
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49
Cong, W., et al.: Enhancing nerf akin to enhancing llms: generalizable nerf transformer with mixture-of-view-experts. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3193–3204 (2023)
Croce, F., Hein, M.: Sparse and imperceivable adversarial attacks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4724–4732 (2019)
Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet: Richly-annotated 3d reconstructions of indoor scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5828–5839 (2017)
Deng, K., Liu, A., Zhu, J.Y., Ramanan, D.: Depth-supervised nerf: Fewer views and faster training for free. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12882–12891 (2022)
Ding, N., Qin, Y., Yang, G., Wei, F., Yang, Z., Su, Y., Hu, S., Chen, Y., Chan, C.M., Chen, W., et al.: Parameter-efficient fine-tuning of large-scale pre-trained language models. Nature Mach. Intell. 5(3), 220–235 (2023)
Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: Radiance fields without neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5501–5510 (2022)
Fu, X., Zhang, S., Chen, T., Lu, Y., Zhu, L., Zhou, X., Geiger, A., Liao, Y.: Panoptic nerf: 3d-to-2d label transfer for panoptic urban scene segmentation. arXiv preprint arXiv:2203.15224 (2022)
Garbin, S.J., Kowalski, M., Johnson, M., Shotton, J., Valentin, J.: Fastnerf: High-fidelity neural rendering at 200fps. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14346–14355 (2021)
Haque, A., Tancik, M., Efros, A.A., Holynski, A., Kanazawa, A.: Instruct-nerf2nerf: editing 3d scenes with instructions. arXiv preprint arXiv:2303.12789 (2023)
Hedman, P., Philip, J., Price, T., Frahm, J.M., Drettakis, G., Brostow, G.: Deep blending for free-viewpoint image-based rendering. ACM Trans. Graph. (2018)
Hedman, P., Srinivasan, P.P., Mildenhall, B., Barron, J.T., Debevec, P.: Baking neural radiance fields for real-time view synthesis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5875–5884 (2021)
Hu, E.J., et al.: Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685 (2021)
Hu, T., Liu, S., Chen, Y., Shen, T., Jia, J.: Efficientnerf efficient neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12902–12911 (2022)
Jain, A., Tancik, M., Abbeel, P.: Putting nerf on a diet: semantically consistent few-shot view synthesis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5885–5894 (2021)
Johari, M.M., Lepoittevin, Y., Fleuret, F.: Geonerf: Generalizing nerf with geometry priors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18365–18375 (2022)
Kundu, A., et al.: Panoptic neural fields: a semantic object-aware neural scene representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12871–12881 (2022)
Laine, S., Hellsten, J., Karras, T., Seol, Y., Lehtinen, J., Aila, T.: Modular primitives for high-performance differentiable rendering. ACM Trans. Graph. (TOG) 39(6), 1–14 (2020)
Li, B., Weinberger, K.Q., Belongie, S., Koltun, V., Ranftl, R.: Language-driven semantic segmentation. In: International Conference on Learning Representations (2022). https://openreview.net/forum?id=RriDjddCLN
Li, Z., Niklaus, S., Snavely, N., Wang, O.: Neural scene flow fields for space-time view synthesis of dynamic scenes. CVPR (2021)
Liang, Y., He, H., Chen, Y.: Retr: Modeling rendering via transformer for generalizable neural surface reconstruction. Advances in Neural Information Processing Systems 36 (2024)
Lindell, D.B., Martel, J.N., Wetzstein, G.: Autoint: automatic integration for fast neural rendering. CVPR (2021)
Liu, F., Zhang, C., Zheng, Y., Duan, Y.: Semantic ray: learning a generalizable semantic field with cross-reprojection attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17386–17396 (2023)
Liu, L., Gu, J., Zaw Lin, K., Chua, T.S., Theobalt, C.: Neural sparse voxel fields. Adv. Neural. Inf. Process. Syst. 33, 15651–15663 (2020)
Liu, Y., et al.: Neural rays for occlusion-aware image-based rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7824–7833 (2022)
Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., Sheikh, Y.: Neural volumes: Learning dynamic renderable volumes from images. SIGGRAPH (2019)
Long, X., Lin, C., Wang, P., Komura, T., Wang, W.: Sparseneus: fast generalizable neural surface reconstruction from sparse views. In: European Conference on Computer Vision, pp. 210–227. Springer (2022). https://doi.org/10.1007/978-3-031-19824-3_13
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: Nerf: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)
Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. arXiv preprint arXiv:2201.05989 (2022)
Murez, Z., van As, T., Bartolozzi, J., Sinha, A., Badrinarayanan, V., Rabinovich, A.: Atlas: end-to-end 3D scene reconstruction from posed images. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 414–431. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_25
Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J., Kohi, P., Shotton, J., Hodges, S., Fitzgibbon, A.: Kinectfusion: Real-time dense surface mapping and tracking. In: 2011 10th IEEE International Symposium on Mixed and Augmented Reality, pp. 127–136. Ieee (2011)
Niemeyer, M., Barron, J.T., Mildenhall, B., Sajjadi, M.S., Geiger, A., Radwan, N.: Regnerf: regularizing neural radiance fields for view synthesis from sparse inputs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5480–5490 (2022)
Niemeyer, M., Geiger, A.: Giraffe: Representing scenes as compositional generative neural feature fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11453–11464 (2021)
Oechsle, M., Peng, S., Geiger, A.: Unisurf: Unifying neural implicit surfaces and radiance fields for multi-view reconstruction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5589–5599 (2021)
Ost, J., Mannan, F., Thuerey, N., Knodt, J., Heide, F.: Neural scene graphs for dynamic scenes. CVPR (2021)
Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-nerf: neural radiance fields for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10318–10327 (2021)
Ranftl, R., Bochkovskiy, A., Koltun, V.: Vision transformers for dense prediction. ArXiv preprint (2021)
Rebain, D., Jiang, W., Yazdani, S., Li, K., Yi, K.M., Tagliasacchi, A.: DeRF: decomposed radiance fields. CVPR (2021)
Reiser, C., Peng, S., Liao, Y., Geiger, A.: Kilonerf: Speeding up neural radiance fields with thousands of tiny mlps. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14335–14345 (2021)
Reizenstein, J., Shapovalov, R., Henzler, P., Sbordone, L., Labatut, P., Novotny, D.: Common objects in 3d: Large-scale learning and evaluation of real-life 3d category reconstruction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10901–10911 (2021)
Ren, Y., Zhang, T., Pollefeys, M., Süsstrunk, S., Wang, F.: Volrecon: volume rendering of signed ray distance functions for generalizable multi-view reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16685–16695 (2023)
Sax, A., Emi, B., Zamir, A.R., Guibas, L.J., Savarese, S., Malik, J.: Mid-level visual representations improve generalization and sample efficiency for learning visuomotor policies (2018)
Schönberger, J.L., Zheng, E., Frahm, J.-M., Pollefeys, M.: Pixelwise view selection for unstructured multi-view stereo. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 501–518. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_31
Schwarz, K., Liao, Y., Niemeyer, M., Geiger, A.: GRAF: generative radiance fields for 3D-aware image synthesis. NeurIPS (2020)
Schwarz, K., Sauer, A., Niemeyer, M., Liao, Y., Geiger, A.: Voxgraf: fast 3d-aware image synthesis with sparse voxel grids. arXiv preprint arXiv:2206.07695 (2022)
Seitz, S.M., Dyer, C.R.: Photorealistic scene reconstruction by voxel coloring. IJCV (1999)
Straub, J., et al.: The replica dataset: a digital replica of indoor spaces. arXiv preprint arXiv:1906.05797 (2019)
Sun, C., Sun, M., Chen, H.T.: Direct voxel grid optimization: Super-fast convergence for radiance fields reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5459–5469 (2022)
Sun, J., Xie, Y., Chen, L., Zhou, X., Bao, H.: Neuralrecon: real-time coherent 3d reconstruction from monocular video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15598–15607 (2021)
Tancik, M., Casser, V., Yan, X., Pradhan, S., Mildenhall, B., Srinivasan, P.P., Barron, J.T., Kretzschmar, H.: Block-nerf: Scalable large scene neural view synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8248–8258 (2022)
Tang, J., et al.: Delicate textured mesh recovery from nerf via adaptive surface refinement. arXiv preprint arXiv:2303.02091 (2023)
Thies, J., Zollhöfer, M., Nießner, M.: Deferred neural rendering: image synthesis using neural textures. Acm Trans. Graph. (TOG) 38(4), 1–12 (2019)
Trevithick, A., Yang, B.: Grf: Learning a general radiance field for 3d representation and rendering. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15182–15192 (2021)
Truong, P., Rakotosaona, M.J., Manhardt, F., Tombari, F.: Sparf: neural radiance fields from sparse and noisy poses. arXiv preprint arXiv:2211.11738 (2022)
Turki, H., Ramanan, D., Satyanarayanan, M.: Mega-nerf: scalable construction of large-scale nerfs for virtual fly-throughs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12922–12931 (2022)
Vaswani, A., et al.: Attention is all you need. Advances in neural information processing systems 30 (2017)
Verbin, D., Hedman, P., Mildenhall, B., Zickler, T., Barron, J.T., Srinivasan, P.P.: Ref-nerf: structured view-dependent appearance for neural radiance fields. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5481–5490. IEEE (2022)
Vora, S., et al.: Nesf: neural semantic fields for generalizable semantic segmentation of 3d scenes. arXiv preprint arXiv:2111.13260 (2021)
Wang, C., Chai, M., He, M., Chen, D., Liao, J.: Clip-nerf: text-and-image driven manipulation of neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3835–3844 (2022)
Wang, P., Chen, X., Chen, T., Venugopalan, S., Wang, Z., et al.: Is attention all nerf needs? arXiv preprint arXiv:2207.13298 (2022)
Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: Neus: learning neural implicit surfaces by volume rendering for multi-view reconstruction. arXiv preprint arXiv:2106.10689 (2021)
Wang, Q., et al.: Ibrnet: learning multi-view image-based rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2021)
Xiangli, Y., et al.: Citynerf: building nerf at city scale. arXiv preprint arXiv:2112.05504 (2021)
Xiangli, Y., et al.: Bungeenerf: Progressive neural radiance field for extreme multi-scale scene rendering. In: ECCV 2022, Part XXXII, pp. 106–122. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19824-3_7
Xu, D., Jiang, Y., Wang, P., Fan, Z., Shi, H., Wang, Z.: Sinnerf: training neural radiance fields on complex scenes from a single image. arXiv preprint arXiv:2204.00928 (2022)
Xu, D., Jiang, Y., Wang, P., Fan, Z., Wang, Y., Wang, Z.: Neurallift-360: lifting an in-the-wild 2d photo to a 3d object with 360 \(\{\)\(\backslash \)deg\(\}\) views. arXiv preprint arXiv:2211.16431 (2022)
Xu, Q., Xu, Z., Philip, J., Bi, S., Shu, Z., Sunkavalli, K., Neumann, U.: Point-nerf: point-based neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5438–5448 (2022)
Yao, Y., Luo, Z., Li, S., Fang, T., Quan, L.: MVSNet: depth inference for unstructured multi-view stereo. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 785–801. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_47
Yariv, L., Gu, J., Kasten, Y., Lipman, Y.: Volume rendering of neural implicit surfaces. Adv. Neural. Inf. Process. Syst. 34, 4805–4815 (2021)
Yariv, L., et al.: Bakedsdf: meshing neural sdfs for real-time view synthesis. arXiv preprint arXiv:2302.14859 (2023)
Yariv, L., et al.: Multiview neural surface reconstruction by disentangling geometry and appearance. Adv. Neural. Inf. Process. Syst. 33, 2492–2502 (2020)
Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: PlenOctrees for real-time rendering of neural radiance fields. In: ICCV (2021)
Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelnerf: neural radiance fields from one or few images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4578–4587 (2021)
Zamir, A.R., Sax, A., , Shen, W.B., Guibas, L., Malik, J., Savarese, S.: Taskonomy: disentangling task transfer learning. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2018)
Zhang, M., Zheng, S., Bao, Z., Hebert, M., Wang, Y.X.: Beyond rgb: scene-property synthesis with neural radiance fields. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 795–805 (2023)
Zhang, X., Bi, S., Sunkavalli, K., Su, H., Xu, Z.: Nerfusion: fusing radiance fields for large-scale scene reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5449–5458 (2022)
Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16259–16268 (2021)
Zhi, S., Laidlow, T., Leutenegger, S., Davison, A.J.: In-place scene labelling and understanding with implicit scene representation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15838–15847 (2021)
Acknowledgement
The work is supported by the National Science Foundation (NSF) through the SCH program (Award number: 1838873) and CoCoSys, one of the seven centers in JUMP 2.0, a Semiconductor Research Corporation (SRC) program sponsored by DARPA.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Fu, Y., Qu, H., Ye, Z., Li, C., Zhao, K., Lin, Y. (2025). Omni-Recon: Harnessing Image-Based Rendering for General-Purpose Neural Radiance Fields. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15074. Springer, Cham. https://doi.org/10.1007/978-3-031-72640-8_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-72640-8_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72639-2
Online ISBN: 978-3-031-72640-8
eBook Packages: Computer ScienceComputer Science (R0)