Abstract
Multimodal large language models (MLLMs) have shown impressive reasoning abilities. However, they are also more vulnerable to jailbreak attacks than their LLM predecessors. Although still capable of detecting the unsafe responses, we observe that safety mechanisms of the pre-aligned LLMs in MLLMs can be easily bypassed with the introduction of image features. To construct robust MLLMs, we propose ECSO (Eyes Closed, Safety On), a novel training-free protecting approach that exploits the inherent safety awareness of MLLMs, and generates safer responses via adaptively transforming unsafe images into texts to activate the intrinsic safety mechanism of pre-aligned LLMs in MLLMs. Experiments on five state-of-the-art (SoTA) MLLMs demonstrate that ECSO enhances model safety significantly (e.g., 37.6% improvement on the MM-SafetyBench (SD+OCR) and 71.3% on VLSafe with LLaVA-1.5-7B), while consistently maintaining utility results on common MLLM benchmarks. Furthermore, we show that ECSO can be used as a data engine to generate supervised-finetuning (SFT) data for MLLM alignment without extra human intervention.
Y. Gou, K. Chen and Z. Liu—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
More detailed description on the dataset can be found in Appendix A.3.
References
Alayrac, J.B., et al.: Flamingo: a visual language model for few-shot learning. arXiv preprint arxiv:2204.14198 (2022)
Bagdasaryan, E., Hsieh, T.Y., Nassi, B., Shmatikov, V.: (ab) using images and sounds for indirect instruction injection in multi-modal LLMs. arXiv preprint arXiv:2307.10490 (2023)
Bai, J., et al.: Qwen-VL: a frontier large vision-language model with versatile abilities. arXiv preprint arXiv:2308.12966 (2023)
Bailey, L., Ong, E., Russell, S., Emmons, S.: Image hijacks: adversarial images can control generative models at runtime. arXiv preprint arXiv:2309.00236 (2023)
Chen, K., et al.: Gaining wisdom from setbacks: aligning large language models via mistake analysis. arXiv preprint arXiv:2310.10477 (2023)
Chen, L., et al.: ShareGPT4V: improving large multi-modal models with better captions. arXiv preprint arXiv:2311.12793 (2023)
Chen, Y., Mendes, E., Das, S., Xu, W., Ritter, A.: Can language models be instructed to protect personal information? arXiv preprint arXiv:2310.02224 (2023)
Chen, Y., Sikka, K., Cogswell, M., Ji, H., Divakaran, A.: Dress: instructing large vision-language models to align and interact with humans via natural language feedback. arXiv preprint arXiv:2311.10081 (2023)
Chiang, W.L., et al.: Vicuna: an open-source chatbot impressing GPT-4 with 90%* chatGPT quality (2023). https://lmsys.org/blog/2023-03-30-vicuna/
Dai, J., et al.: Safe RLHF: safe reinforcement learning from human feedback. arXiv preprint arXiv:2310.12773 (2023)
Dai, W., et al.: InstructBLIP: towards general-purpose vision-language models with instruction tuning. arXiv preprint arxiv:2305.06500 (2023)
Dong, Y., et al.: How robust is Google’s bard to adversarial image attacks? arXiv preprint arXiv:2309.11751 (2023)
Fu, C., et al.: MME: a comprehensive evaluation benchmark for multimodal large language models. arXiv preprint arXiv:2306.13394 (2023)
Fu, X., et al.: Misusing tools in large language models with visual adversarial examples. arXiv preprint arXiv:2310.03185 (2023)
Gong, Y., et al.: FigStep: jailbreaking large vision-language models via typographic visual prompts. arXiv preprint arXiv:2311.05608 (2023)
Gou, Y., et al.: Mixture of cluster-conditional LoRA experts for vision-language instruction tuning. arXiv preprint arXiv:2312.12379 (2023)
Jiang, A.Q., et al.: Mixtral of experts. arXiv preprint arXiv:2401.04088 (2024)
Li, M., Li, L., Yin, Y., Ahmed, M., Liu, Z., Liu, Q.: Red teaming visual language models. arXiv preprint arXiv:2401.12915 (2024)
Li, Y., et al.: Automated evaluation of large vision-language models on self-driving corner cases. arXiv preprint arXiv:2404.10595 (2024)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, H., Sferrazza, C., Abbeel, P.: Languages are rewards: hindsight finetuning using human feedback. arXiv preprint arXiv:2302.02676 (2023)
Liu, H., Li, C., Li, Y., Lee, Y.J.: Improved baselines with visual instruction tuning. arXiv preprint arXiv:2310.03744 (2023)
Liu, X., Zhu, Y., Lan, Y., Yang, C., Qiao, Y.: Query-relevant images jailbreak large multi-modal models. arXiv preprint arXiv:2311.17600 (2023)
Liu, X., Zhu, Y., Lan, Y., Yang, C., Qiao, Y.: Safety of multimodal large language models on images and text. arXiv preprint arXiv:2402.00357 (2024)
Liu, Y., et al.: MMBench: is your multi-modal model an all-around player? arXiv preprint arXiv:2307.06281 (2023)
Liu, Z., et al.: Mixture of insightful experts (mote): the synergy of thought chains and expert mixtures in self-alignment. arXiv preprint arXiv:2405.00557 (2024)
Luo, H., Gu, J., Liu, F., Torr, P.: An image is worth 1000 lies: transferability of adversarial images across prompts on vision-language models. In: ICLR (2024)
Ouyang, L., et al.: Training language models to follow instructions with human feedback. In: NeruIPS (2022)
Pi, R., et al.: MLLM-protector: ensuring MLLM’s safety without hurting performance. arXiv preprint arXiv:2401.02906 (2024)
Qi, X., Huang, K., Panda, A., Wang, M., Mittal, P.: Visual adversarial examples jailbreak large language models. arXiv preprint arXiv:2306.13213 (2023)
Rafailov, R., Sharma, A., Mitchell, E., Manning, C.D., Ermon, S., Finn, C.: Direct preference optimization: your language model is secretly a reward model. In: NeurIPS (2023)
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: CVPR (2022)
Saunders, W., et al.: Self-critiquing models for assisting human evaluators. arXiv preprint arXiv:2206.05802 (2022)
Schlarmann, C., Hein, M.: On the adversarial robustness of multi-modal foundation models. In: ICCV (2023)
Shayegani, E., Dong, Y., Abu-Ghazaleh, N.: Plug and pray: exploiting off-the-shelf components of multi-modal models. arXiv preprint arXiv:2307.14539 (2023)
Sun, H., Zhang, Z., Deng, J., Cheng, J., Huang, M.: Safety assessment of Chinese large language models. arXiv preprint arXiv:2304.10436 (2023)
Taori, R., et al.: Stanford alpaca: an instruction-following LLaMA model (2023). https://github.com/tatsu-lab/stanford_alpaca
Touvron, H., et al.: LLaMA: open and efficient foundation language models. arXiv preprint arXiv:2302.13971 (2023)
Touvron, H., et al.: LLaMA 2: open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023)
Tu, H., et al.: How many unicorns are in this image? a safety evaluation benchmark for vision LLMs. arXiv preprint arXiv:2311.16101 (2023)
Wang, P., et al.: InferAligner: inference-time alignment for harmlessness through cross-model guidance. arXiv preprint arXiv:2401.11206 (2024)
Wang, Y., et al.: Aligning large language models with human: a survey. arXiv preprint arXiv:2307.12966 (2023)
Wu, P., Xie, S.: V*: guided visual search as a core mechanism in multimodal LLMs. arXiv preprint arXiv:2312.14135 (2023)
Wu, Y., Li, X., Liu, Y., Zhou, P., Sun, L.: Jailbreaking GPT-4V via self-adversarial attacks with system prompts. arXiv preprint arXiv:2311.09127 (2023)
Ye, Q., et al.: mPLUG-Owl2: revolutionizing multi-modal large language model with modality collaboration. arXiv preprint arXiv:2311.04257 (2023)
Yu, W., et al.: MM-Vet: evaluating large multimodal models for integrated capabilities. arXiv preprint arXiv:2308.02490 (2023)
Zhang, P., et al.: InterNLM-XComposer: a vision-language large model for advanced text-image comprehension and composition. arXiv preprint arXiv:2309.15112 (2023)
Zhang, Z., Zhang, A., Li, M., Zhao, H., Karypis, G., Smola, A.: Multimodal chain-of-thought reasoning in language models. arXiv preprint arXiv:2302.00923 (2023)
Zhao, Y., et al.: On evaluating adversarial robustness of large vision-language models. In: Advances in Neural Information Processing Systems, vol. 36 (2024)
Zong, Y., Bohdal, O., Yu, T., Yang, Y., Hospedales, T.: Safety fine-tuning at (almost) no cost: a baseline for vision large language models. arXiv preprint arXiv:2402.02207 (2024)
Acknowledgement
We gratefully acknowledge the support of MindSpore, CANN (Compute Architecture for Neural Networks) and Ascend AI Processor used for this research. This work was partially supported by NSFC key grant 62136005, NSFC general grant 62076118, Shenzhen fundamental research program JCYJ20210324105000003, the Research Grants Council of the Hong Kong Special Administrative Region (Grants C7004-22G-1 and 16202523), and the Research Grants Council of Hong Kong through the Research Impact Fund project R6003-21.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gou, Y. et al. (2025). Eyes Closed, Safety on: Protecting Multimodal LLMs via Image-to-Text Transformation. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15075. Springer, Cham. https://doi.org/10.1007/978-3-031-72643-9_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-72643-9_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72642-2
Online ISBN: 978-3-031-72643-9
eBook Packages: Computer ScienceComputer Science (R0)