Skip to main content

TOD3Cap: Towards 3D Dense Captioning in Outdoor Scenes

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

3D dense captioning stands as a cornerstone in achieving a comprehensive understanding of 3D scenes through natural language. It has recently witnessed remarkable achievements, particularly in indoor settings. However, the exploration of 3D dense captioning in outdoor scenes is hindered by two major challenges: 1) the domain gap between indoor and outdoor scenes, such as dynamics and sparse visual inputs, makes it difficult to adapt existing indoor methods directly; 2) the lack of data with comprehensive box-caption pair annotations specifically tailored for outdoor scenes. To this end, we introduce the new task of outdoor 3D dense captioning. As input, we assume a LiDAR point cloud and a set of RGB images captured by the panoramic camera rig. The expected output is a set of object boxes with captions. To tackle this task, we propose the \({\boldsymbol{TOD}}^3{\boldsymbol{Cap}}\) network, which leverages the BEV representation to generate object box proposals and integrates Relation Q-Former with LLaMA-Adapter to generate rich captions for these objects. We also introduce the \({\boldsymbol{TOD}}^3{\boldsymbol{Cap}}\) dataset, the first million-scale dataset to our knowledge for 3D dense captioning in outdoor scenes, which contains 2.3M descriptions of 64.3K outdoor objects from 850 scenes in nuScenes. Notably, our \(TOD^{3}Cap\) network can effectively localize and caption 3D objects in outdoor scenes, which outperforms baseline methods by a significant margin (+9.6 CiDEr@0.5IoU). Code, dataset and models are publicly available at https://github.com/jxbbb/TOD3Cap.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It means using ground truth words as the conditioning during training, which differs from the auto-regressive testing setting that uses predicted words for conditioning.

References

  1. Achlioptas, P., Abdelreheem, A., Xia, F., Elhoseiny, M., Guibas, L.: Referit3D: neural listeners for fine-grained 3D object identification in real-world scenes. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020, Proceedings, Part I 16, pp. 422–440. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_25

  2. Banerjee, S., Lavie, A.: METEOR: an automatic metric for MT evaluation with improved correlation with human judgments. In: Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, pp. 65–72 (2005)

    Google Scholar 

  3. Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11621–11631 (2020)

    Google Scholar 

  4. Cai, D., Zhao, L., Zhang, J., Sheng, L., Xu, D.: 3DJCG: a unified framework for joint dense captioning and visual grounding on 3D point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16464–16473 (2022)

    Google Scholar 

  5. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  6. Chen, D.Z., Chang, A.X., Nießner, M.: ScanRefer: 3D object localization in RGB-D scans using natural language. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 202–221. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_13

    Chapter  Google Scholar 

  7. Chen, D.Z., Wu, Q., Nießner, M., Chang, A.X.: D3Net: a speaker-listener architecture for semi-supervised dense captioning and visual grounding in RGB-D scans. arXiv preprint arXiv:2112.01551, 2021.3 (2021)

  8. Chen, D.Y., Tian, X.P., Shen, Y.T., Ouhyoung, M.: On visual similarity based 3D model retrieval. Comput. Graph. Forum 22, 223–232 (2003). Wiley Online Library

    Google Scholar 

  9. Chen, S., et al.: LL3DA: visual interactive instruction tuning for Omni-3D understanding, reasoning, and planning. arXiv preprint arXiv:2311.18651 (2023)

  10. Chen, S., Zhu, H., Chen, X., Lei, Y., Yu, G., Chen, T.: End-to-end 3D dense captioning with Vote2Cap-DETR. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11124–11133 (2023)

    Google Scholar 

  11. Chen, S., et al.: Vote2Cap-DETR++: decoupling localization and describing for end-to-end 3D dense captioning. arXiv preprint arXiv:2309.02999 (2023)

  12. Chen, Z., Gholami, A., Nießner, M., Chang, A.X.: Scan2Cap: context-aware dense captioning in RGB-D scans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3193–3203 (2021)

    Google Scholar 

  13. Chen, Z., Hu, R., Chen, X., Nießner, M., Chang, A.X.: Unit3D: a unified transformer for 3D dense captioning and visual grounding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 18109–18119 (2023)

    Google Scholar 

  14. Cheng, S., et al.: Can vision-language models think from a first-person perspective? arXiv preprint arXiv:2311.15596 (2023)

  15. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: ScanNet: richly-annotated 3D reconstructions of indoor scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5828–5839 (2017)

    Google Scholar 

  16. Deitke, M., et al.: Objaverse-XL: a universe of 10M+ 3D objects. In: Advances in Neural Information Processing Systems, vol. 36 (2024)

    Google Scholar 

  17. Deitke, M., et al.: Objaverse: a universe of annotated 3D objects. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13142–13153 (2023)

    Google Scholar 

  18. Delitzas, A., Takmaz, A., Tombari, F., Sumner, R., Pollefeys, M., Engelmann, F.: SceneFun3D: fine-grained functionality and affordance understanding in 3D scenes. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2024)

    Google Scholar 

  19. Hong, Y., et al.: 3D-LLM: injecting the 3D world into large language models. In: Advances in Neural Information Processing Systems, vol. 36 (2024)

    Google Scholar 

  20. Hu, A., et al.: FIERY: future instance prediction in bird’s-eye view from surround monocular cameras. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2021)

    Google Scholar 

  21. Huang, C., Mees, O., Zeng, A., Burgard, W.: Visual language maps for robot navigation. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 10608–10615. IEEE (2023)

    Google Scholar 

  22. Huang, J., Huang, G., Zhu, Z., Ye, Y., Du, D.: BEVDet: high-performance multi-camera 3D object detection in bird-eye-view. arXiv preprint arXiv:2112.11790 (2021)

  23. Huang, X., Peng, Y., Yuan, M.: MHTN: modal-adversarial hybrid transfer network for cross-modal retrieval. IEEE Trans. Cybern. 50(3), 1047–1059 (2018)

    Article  Google Scholar 

  24. Jia, B., et al.: SceneVerse: scaling 3D vision-language learning for grounded scene understanding. arXiv preprint arXiv:2401.09340 (2024)

  25. Jiao, Y., Chen, S., Jie, Z., Chen, J., Ma, L., Jiang, Y.G.: MORE: multi-order relation mining for dense captioning in 3D scenes. In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. LNCS, vol. 13695, pp. 528–545. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19833-5_31

  26. Jin, B., et al.: ADAPT: action-aware driving caption transformer. arXiv preprint arXiv:2302.00673 (2023)

  27. Li, Y., et al.: BEVDepth: acquisition of reliable depth for multi-view 3D object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence (2023)

    Google Scholar 

  28. Li, Z., et al.: BEVFormer: learning bird’s-eye-view representation from multi-camera images via spatiotemporal transformers. In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds.) European Conference on Computer Vision. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20077-9_1

  29. Lin, C.Y.: ROUGE: a package for automatic evaluation of summaries. In: Text Summarization Branches Out, pp. 74–81 (2004)

    Google Scholar 

  30. Liu, Z., et al.: BEVFusion: multi-task multi-sensor fusion with unified bird’s-eye view representation. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 2774–2781. IEEE (2023)

    Google Scholar 

  31. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  32. Ouyang, L., et al.: Training language models to follow instructions with human feedback. Adv. Neural. Inf. Process. Syst. 35, 27730–27744 (2022)

    Google Scholar 

  33. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp. 311–318 (2002)

    Google Scholar 

  34. Philion, J., Fidler, S.: Lift, splat, shoot: encoding images from arbitrary camera rigs by implicitly unprojecting to 3D. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020, Proceedings, Part XIV 16. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_12

  35. Pidathala, P., Franz, D., Waller, J., Kushalnagar, R., Vogler, C.: Live captions in virtual reality (VR). arXiv preprint arXiv:2210.15072 (2022)

  36. Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep Hough voting for 3D object detection in point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9277–9286 (2019)

    Google Scholar 

  37. Qian, T., Chen, J., Zhuo, L., Jiao, Y., Jiang, Y.G.: NuScenes-QA: a multi-modal visual question answering benchmark for autonomous driving scenario. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, pp. 4542–4550 (2024)

    Google Scholar 

  38. Radford, A., et al.: Language models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)

    Google Scholar 

  39. Sachdeva, E., et al.: Rank2Tell: a multimodal driving dataset for joint importance ranking and reasoning. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 7513–7522 (2024)

    Google Scholar 

  40. Saha, A., Mendez, O., Russell, C., Bowden, R.: Translating images into maps. In: 2022 International Conference on Robotics and Automation (ICRA) (2022)

    Google Scholar 

  41. Savva, M., et al.: Habitat: a platform for embodied AI research. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9339–9347 (2019)

    Google Scholar 

  42. Sima, C., et al.: DriveLM: driving with graph visual question answering. arXiv preprint arXiv:2312.14150 (2023)

  43. Tian, X., et al.: DriveVLM: the convergence of autonomous driving and large vision-language models. arXiv preprint arXiv:2402.12289 (2024)

  44. Vedantam, R., Lawrence Zitnick, C., Parikh, D.: CIDEr: consensus-based image description evaluation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4566–4575 (2015)

    Google Scholar 

  45. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image caption generator. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2015)

    Google Scholar 

  46. Wang, H., Zhang, C., Yu, J., Cai, W.: Spatiality-guided transformer for 3D dense captioning on point clouds. arXiv preprint arXiv:2204.10688 (2022)

  47. Wang, X., et al.: Reinforced cross-modal matching and self-supervised imitation learning for vision-language navigation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6629–6638 (2019)

    Google Scholar 

  48. Wang, Y., Guizilini, V.C., Zhang, T., Wang, Y., Zhao, H., Solomon, J.: DETR3D: 3D object detection from multi-view images via 3D-to-2D queries. In: Conference on Robot Learning, pp. 180–191. PMLR (2022)

    Google Scholar 

  49. Yang, S., et al.: LiDAR-LLM: exploring the potential of large language models for 3D LiDAR understanding. arXiv preprint arXiv:2312.14074 (2023)

  50. Yu, T., Lin, X., Wang, S., Sheng, W., Huang, Q., Yu, J.: A comprehensive survey of 3D dense captioning: localizing and describing objects in 3D scenes. IEEE Trans. Circ. Syst. Video Technol. (2023)

    Google Scholar 

  51. Yuan, Z., et al.: X-Trans2Cap: cross-modal knowledge transfer using transformer for 3D dense captioning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8563–8573 (2022)

    Google Scholar 

  52. Zhang, R., et al.: LLaMA-adapter: efficient fine-tuning of language models with zero-init attention. arXiv preprint arXiv:2303.16199 (2023)

  53. Zhang, Y., Gong, Z., Chang, A.X.: Multi3DRefer: grounding text description to multiple 3D objects. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15225–15236 (2023)

    Google Scholar 

  54. Zhong, Y., Xu, L., Luo, J., Ma, L.: Contextual modeling for 3D dense captioning on point clouds. arXiv preprint arXiv:2210.03925 (2022)

  55. Zhu, F., Zhu, Y., Chang, X., Liang, X.: Vision-language navigation with self-supervised auxiliary reasoning tasks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10012–10022 (2020)

    Google Scholar 

  56. Zhu, Z., Ma, X., Chen, Y., Deng, Z., Huang, S., Li, Q.: 3D-VisTa: pre-trained transformer for 3D vision and text alignment. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2911–2921 (2023)

    Google Scholar 

Download references

Acknowledgments

We would like to thank Dave Zhenyu Chen at Technical University of Munich for his valuable proofreading and insightful suggestions. We would also like to thank Lijun Zhou and the student volunteers at Li Auto for their efforts in building the \(TOD^{3}Cap\) dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yupeng Zheng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3542 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jin, B. et al. (2025). TOD3Cap: Towards 3D Dense Captioning in Outdoor Scenes. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15076. Springer, Cham. https://doi.org/10.1007/978-3-031-72649-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72649-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72648-4

  • Online ISBN: 978-3-031-72649-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics