Abstract
3D dense captioning is a task involving the localization of objects and the generation of descriptions for each object in a 3D scene. Recent approaches have attempted to incorporate contextual information by modeling relationships with object pairs or aggregating the nearest neighbor features of an object. However, the contextual information constructed in these scenarios is limited in two aspects: first, objects have multiple positional relationships that exist across the entire global scene, not only near the object itself. Second, it faces with contradicting objectives–where localization and attribute descriptions are generated better with tight localization, while descriptions involving global positional relations are generated better with contextualized features of the global scene. To overcome this challenge, we introduce BiCA, a transformer encoder-decoder pipeline that engages in 3D dense captioning for each object with Bi-directional Contextual Attention. Leveraging parallelly decoded instance queries for objects and context queries for non-object contexts, BiCA generates object-aware contexts, where the contexts relevant to each object is summarized, and context-aware objects, where the objects relevant to the summarized object-aware contexts are aggregated. This extension relieves previous methods from the contradicting objectives, enhancing both localization performance and enabling the aggregation of contextual features throughout the global scene; thus improving caption generation performance simultaneously. Extensive experiments on two of the most widely-used 3D dense captioning datasets demonstrate that our proposed method achieves a significant improvement over prior methods.
M. Kim—Work done during internship at LG AI Research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Achlioptas, P., Abdelreheem, A., Xia, F., Elhoseiny, M., Guibas, L.: ReferIt3D: neural listeners for fine-grained 3D object identification in real-world scenes. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020, Proceedings, Part I 16, pp. 422–440. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_25
Anderson, P., et al.: Bottom-up and top-down attention for image captioning and visual question answering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6077–6086 (2018)
Banerjee, S., Lavie, A.: METEOR: an automatic metric for MT evaluation with improved correlation with human judgments. In: Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, pp. 65–72 (2005)
Cai, D., Zhao, L., Zhang, J., Sheng, L., Xu, D.: 3DJCG: a unified framework for joint dense captioning and visual grounding on 3D point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16464–16473 (2022)
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Chen, D.Z., Chang, A.X., Nießner, M.: ScanRefer: 3D object localization in RGB-D scans using natural language. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 202–221. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_13
Chen, D.Z., Wu, Q., Nießner, M., Chang, A.X.: D3Net: a unified speaker-listener architecture for 3D dense captioning and visual grounding. In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. LNCS, vol. 13692, pp. 487–505. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19824-3_29
Chen, J., Lei, B., Song, Q., Ying, H., Chen, D.Z., Wu, J.: A hierarchical graph network for 3D object detection on point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 392–401 (2020)
Chen, S., Zhu, H., Chen, X., Lei, Y., Yu, G., Chen, T.: End-to-end 3D dense captioning with Vote2Cap-DETR. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11124–11133 (2023)
Chen, S., et al.: Vote2Cap-DETR++: decoupling localization and describing for end-to-end 3D dense captioning. IEEE Trans. Pattern Anal. Mach. Intell. (2024)
Chen, Z., Gholami, A., Nießner, M., Chang, A.X.: Scan2Cap: context-aware dense captioning in RGB-D scans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3193–3203 (2021)
Chen, Z., Hu, R., Chen, X., Nießner, M., Chang, A.X.: Unit3D: a unified transformer for 3D dense captioning and visual grounding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 18109–18119 (2023)
Chin-Yew, L.: ROUGE: a package for automatic evaluation of summaries. In: Proceedings of the Workshop on Text Summarization Branches Out (2004)
Cornia, M., Stefanini, M., Baraldi, L., Cucchiara, R.: Meshed-memory transformer for image captioning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10578–10587 (2020)
Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: ScanNet: richly-annotated 3D reconstructions of indoor scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2017)
Ghandi, T., Pourreza, H., Mahyar, H.: Deep learning approaches on image captioning: a review. arXiv preprint arXiv:2201.12944 (2022)
Hossain, M.Z., Sohel, F., Shiratuddin, M.F., Laga, H.: A comprehensive survey of deep learning for image captioning. ACM Comput. Surv. (CsUR) 51(6), 1–36 (2019)
Jiang, L., Zhao, H., Shi, S., Liu, S., Fu, C.W., Jia, J.: PointGroup: dual-set point grouping for 3D instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4867–4876 (2020)
Jiao, Y., Chen, S., Jie, Z., Chen, J., Ma, L., Jiang, Y.G.: MORE: multi-order relation mining for dense captioning in 3D scenes. In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds.) European Conference on Computer Vision, pp. 528–545. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19833-5_31
Jin, Z., Hayat, M., Yang, Y., Guo, Y., Lei, Y.: Context-aware alignment and mutual masking for 3D-language pre-training. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10984–10994 (2023)
Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logistics Q. 2(1–2), 83–97 (1955)
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)
Mao, A., Yang, Z., Chen, W., Yi, R., Liu, Y.J.: Complete 3D relationships extraction modality alignment network for 3D dense captioning. IEEE Trans. Vis. Comput. Graph. 30(8), 4867–4880 (2023)
Misra, I., Girdhar, R., Joulin, A.: An end-to-end transformer model for 3D object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2906–2917 (2021)
Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp. 311–318 (2002)
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep Hough voting for 3D object detection in point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9277–9286 (2019)
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Radford, A., et al.: Language models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)
Rennie, S.J., Marcheret, E., Mroueh, Y., Ross, J., Goel, V.: Self-critical sequence training for image captioning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7008–7024 (2017)
Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. Adv. Neural. Inf. Process. Syst. 33, 7537–7547 (2020)
Vedantam, R., Lawrence Zitnick, C., Parikh, D.: CIDEr: consensus-based image description evaluation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4566–4575 (2015)
Wang, H., Zhang, C., Yu, J., Cai, W.: Spatiality-guided transformer for 3D dense captioning on point clouds. arXiv preprint arXiv:2204.10688 (2022)
Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: International Conference on Machine Learning, pp. 2048–2057. PMLR (2015)
Yang, X., Tang, K., Zhang, H., Cai, J.: Auto-encoding scene graphs for image captioning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10685–10694 (2019)
Yuan, Z., et al.: X-Trans2Cap: cross-modal knowledge transfer using transformer for 3D dense captioning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8563–8573 (2022)
Zhong, Y., Xu, L., Luo, J., Ma, L.: Contextual modeling for 3D dense captioning on point clouds. arXiv preprint arXiv:2210.03925 (2022)
Acknowledgement
This work was supported by LG AI Research and Institute of Information & Communications Technology Planning & Evaluation (IITP) grant (No. RS-2019-II191082, No. RS-2022-II220156) funded by the Korea government (MSIT).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kim, M., Lim, H.S., Lee, S., Kim, B., Kim, G. (2025). Bi-directional Contextual Attention for 3D Dense Captioning. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15076. Springer, Cham. https://doi.org/10.1007/978-3-031-72649-1_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-72649-1_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72648-4
Online ISBN: 978-3-031-72649-1
eBook Packages: Computer ScienceComputer Science (R0)