Skip to main content

You Only Learn One Query: Learning Unified Human Query for Single-Stage Multi-person Multi-task Human-Centric Perception

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Human-centric perception (e.g. detection, segmentation, pose estimation, and attribute analysis) is a long-standing problem for computer vision. This paper introduces a unified and versatile framework (HQNet) for single-stage multi-person multi-task human-centric perception (HCP). Our approach centers on learning a unified human query representation, denoted as Human Query, which captures intricate instance-level features for individual persons and disentangles complex multi-person scenarios. Although different HCP tasks have been well-studied individually, single-stage multi-task learning of HCP tasks has not been fully exploited in the literature due to the absence of a comprehensive benchmark dataset. To address this gap, we propose COCO-UniHuman benchmark to enable model development and comprehensive evaluation. Experimental results demonstrate the proposed method’s state-of-the-art performance among multi-task HCP models and its competitive performance compared to task-specific HCP models. Moreover, our experiments underscore Human Query’s adaptability to new HCP tasks, thus demonstrating its robust generalization capability. Codes and data are available at https://github.com/lishuhuai527/COCO-UniHuman.

S. Jin and S. Li—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    UniHead trains separate models for different HCP tasks.

References

  1. Abdulnabi, A.H., Wang, G., Lu, J., Jia, K.: Multi-task cnn model for attribute prediction. IEEE Trans. Multimedia 17(11), 1949–1959 (2015)

    Article  Google Scholar 

  2. Agustsson, E., Timofte, R., Escalera, S., Baro, X., Guyon, I., Rothe, R.: Apparent and real age estimation in still images with deep residual regressors on appa-real database. In: IEEE International Conference on Automation Face & Gesture Recognition, pp. 87–94 (2017)

    Google Scholar 

  3. Alp Güler, R., Neverova, N., Kokkinos, I.: Densepose: dense human pose estimation in the wild. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  4. Andriluka, M., et al.: Posetrack: a benchmark for human pose estimation and tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  5. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2d human pose estimation: new benchmark and state of the art analysis. In: IEEE Conference on Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  6. Bolya, D., Zhou, C., Xiao, F., Lee, Y.J.: Yolact: real-time instance segmentation. In: International Conference on Computer Vision, pp. 9157–9166 (2019)

    Google Scholar 

  7. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2d pose estimation using part affinity fields. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  8. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-End object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  9. Chen, W., et al.: Beyond appearance: a semantic controllable self-supervised learning framework for human-centric visual tasks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 15050–15061 (2023)

    Google Scholar 

  10. Cheng, B., Xiao, B., Wang, J., Shi, H., Huang, T.S., Zhang, L.: Higherhrnet: scale-aware representation learning for bottom-up human pose estimation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5386–5395 (2020)

    Google Scholar 

  11. Ci, Y., et al.: Unihcp: a unified model for human-centric perceptions. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 17840–17852 (2023)

    Google Scholar 

  12. Deng, Y., Luo, P., Loy, C.C., Tang, X.: Pedestrian attribute recognition at far distance. In: ACM International Conference on Multimedia, pp. 789–792 (2014)

    Google Scholar 

  13. Doering, A., Chen, D., Zhang, S., Schiele, B., Gall, J.: Posetrack21: a dataset for person search, multi-object tracking and multi-person pose tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 20963–20972 (2022)

    Google Scholar 

  14. Dollár, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: a benchmark. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 304–311 (2009)

    Google Scholar 

  15. Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. In: International Conference on Learning Representation (2021)

    Google Scholar 

  16. Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: Yolox: exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430 (2021)

  17. Geng, Z., Sun, K., Xiao, B., Zhang, Z., Wang, J.: Bottom-up human pose estimation via disentangled keypoint regression. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 14676–14686 (2021)

    Google Scholar 

  18. Gong, K., Liang, X., Li, Y., Chen, Y., Yang, M., Lin, L.: Instance-level human parsing via part grouping network. In: European Conference on Computer Vision, pp. 770–785 (2018)

    Google Scholar 

  19. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: International Conference Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  21. Hong, F., Pan, L., Cai, Z., Liu, Z.: Versatile multi-modal pre-training for human-centric perception. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 16156–16166 (2022)

    Google Scholar 

  22. Insafutdinov, E., Pishchulin, L., Andres, B., Andriluka, M., Schiele, B.: DeeperCut: a deeper, stronger, and faster multi-person pose estimation model. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 34–50. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_3

    Chapter  Google Scholar 

  23. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6m: large scale datasets and predictive methods for 3d human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2013)

    Google Scholar 

  24. Jia, J., Huang, H., Yang, W., Chen, X., Huang, K.: Rethinking of pedestrian attribute recognition: realistic datasets with efficient method. arXiv preprint arXiv:2005.11909 (2020)

  25. Jiang, W., Jin, S., Liu, W., Qian, C., Luo, P., Liu, S.: Posetrans: a simple yet effective pose transformation augmentation for human pose estimation. In: European Conference on Computer Vision, pp. 643–659 (2022)

    Google Scholar 

  26. Jin, S., Liu, W., Ouyang, W., Qian, C.: Multi-person articulated tracking with spatial and temporal embeddings. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5664–5673 (2019)

    Google Scholar 

  27. Jin, S., Liu, W., Xie, E., Wang, W., Qian, C., Ouyang, W., Luo, P.: Differentiable hierarchical graph grouping for multi-person pose estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 718–734. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_42

    Chapter  Google Scholar 

  28. Jin, S., et al.: Whole-body human pose estimation in the wild. In: European Conference on Computer Vision (2020)

    Google Scholar 

  29. Jin, S., et al.: Unifs: universal few-shot instance perception with point representations. In: European Conference on Computer Vision (2024)

    Google Scholar 

  30. Joo, H., Neverova, N., Vedaldi, A.: Exemplar fine-tuning for 3d human model fitting towards in-the-wild 3d human pose estimation. In: International Conference on 3D Vision, pp. 42–52. IEEE (2021)

    Google Scholar 

  31. Ju, X., Zeng, A., Wang, J., Xu, Q., Zhang, L.: Human-art: a versatile human-centric dataset bridging natural and artificial scenes. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 618–629 (2023)

    Google Scholar 

  32. Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 7122–7131 (2018)

    Google Scholar 

  33. Kirillov, A., Levinkov, E., Andres, B., Savchynskyy, B., Rother, C.: Instancecut: from edges to instances with multicut. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5008–5017 (2017)

    Google Scholar 

  34. Kong, S., Fowlkes, C.C.: Recurrent pixel embedding for instance grouping. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 9018–9028 (2018)

    Google Scholar 

  35. Li, F., Zhang, H., Liu, S., Guo, J., Ni, L.M., Zhang, L.: Dn-detr: accelerate detr training by introducing query denoising. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 13619–13627 (2022)

    Google Scholar 

  36. Li, F., et al.: Mask dino: towards a unified transformer-based framework for object detection and segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3041–3050 (2023)

    Google Scholar 

  37. Li, J., et al.: Multiple-human parsing in the wild. arXiv preprint arXiv:1705.07206 (2017)

  38. Li, K., Wang, S., Zhang, X., Xu, Y., Xu, W., Tu, Z.: Pose recognition with cascade transformers. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1944–1953 (2021)

    Google Scholar 

  39. Li, Y., Huang, C., Loy, C.C., Tang, X.: Human attribute recognition by deep hierarchical contexts. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 684–700. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_41

    Chapter  Google Scholar 

  40. Liang, J., Song, G., Leng, B., Liu, Y.: Unifying visual perception by dispersible points learning. In: European Conference on Computer Vision, pp. 439–456 (2022)

    Google Scholar 

  41. Lin, J., Zeng, A., Wang, H., Zhang, L., Li, Y.: One-stage 3d whole-body mesh recovery with component aware transformer. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 21159–21168 (2023)

    Google Scholar 

  42. Lin, K., Wang, L., Liu, Z.: End-to-end human pose and mesh reconstruction with transformers. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1954–1963 (2021)

    Google Scholar 

  43. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  44. Lin, Y., Shen, J., Wang, Y., Pantic, M.: Fp-age: leveraging face parsing attention for facial age estimation in the wild. IEEE Trans. Image Process (2022)

    Google Scholar 

  45. Liu, S., et al.: Dab-detr: dynamic anchor boxes are better queries for detr. In: International Conference on Learning Representation (2022)

    Google Scholar 

  46. Liu, X., et al.: Hydraplus-net: attentive deep features for pedestrian analysis. In: International Conference on Computer Vision, pp. 1–9 (2017)

    Google Scholar 

  47. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  48. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: International Conference on Computer Vision (2015)

    Google Scholar 

  49. Luo, Z., Wang, Z., Huang, Y., Wang, L., Tan, T., Zhou, E.: Rethinking the heatmap regression for bottom-up human pose estimation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 13264–13273 (2021)

    Google Scholar 

  50. Mao, W., Tian, Z., Wang, X., Shen, C.: Fcpose: fully convolutional multi-person pose estimation with dynamic instance-aware convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 9034–9043 (2021)

    Google Scholar 

  51. Newell, A., Huang, Z., Deng, J.: Associative embedding: end-to-end learning for joint detection and grouping. Adv. Neural Inform. Process. Syst. (2017)

    Google Scholar 

  52. Nie, X., Feng, J., Yan, S.: Mutual learning to adapt for joint human parsing and pose estimation. In: European Conference on Computer Vision, pp. 502–517 (2018)

    Google Scholar 

  53. Nie, X., Feng, J., Zhang, J., Yan, S.: Single-stage multi-person pose machines. In: International Conference on Computer Vision, pp. 6951–6960 (2019)

    Google Scholar 

  54. Nie, X., Feng, J., Zuo, Y., Yan, S.: Human pose estimation with parsing induced learner. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2100–2108 (2018)

    Google Scholar 

  55. Pang, H.E., Cai, Z., Yang, L., Zhang, T., Liu, Z.: Benchmarking and analyzing 3d human pose and shape estimation beyond algorithms. Adv. Neural. Inf. Process. Syst. 35, 26034–26051 (2022)

    Google Scholar 

  56. Papandreou, G., Zhu, T., Chen, L.C., Gidaris, S., Tompson, J., Murphy, K.: Personlab: person pose estimation and instance segmentation with a bottom-up, part-based, geometric embedding model. In: European Conference on Computer Vision, pp. 269–286 (2018)

    Google Scholar 

  57. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. (2015)

    Google Scholar 

  58. Rothe, R., Timofte, R., Van Gool, L.: Dex: deep expectation of apparent age from a single image. In: International Conference on Computer Vision Workshop, pp. 10–15 (2015)

    Google Scholar 

  59. Shao, S., Zhao, Z., Li, B., Xiao, T., Yu, G., Zhang, X., Sun, J.: Crowdhuman: a benchmark for detecting human in a crowd. arXiv preprint arXiv:1805.00123 (2018)

  60. Shi, D., Wei, X., Li, L., Ren, Y., Tan, W.: End-to-end multi-person pose estimation with transformers. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 11069–11078 (2022)

    Google Scholar 

  61. Shi, D., Wei, X., Yu, X., Tan, W., Ren, Y., Pu, S.: Inspose: instance-aware networks for single-stage multi-person pose estimation. In: ACM International Conference on Multimedia, pp. 3079–3087 (2021)

    Google Scholar 

  62. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5693–5703 (2019)

    Google Scholar 

  63. Sun, Y., Bao, Q., Liu, W., Fu, Y., Black, M.J., Mei, T.: Monocular, one-stage, regression of multiple 3d people. In: International Conference on Computer Vision, pp. 11179–11188 (2021)

    Google Scholar 

  64. Tang, S., et al.: Humanbench: towards general human-centric perception with projector assisted pretraining. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 21970–21982 (2023)

    Google Scholar 

  65. Tian, Y., Luo, P., Wang, X., Tang, X.: Pedestrian detection aided by deep learning semantic tasks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5079–5087 (2015)

    Google Scholar 

  66. Tian, Z., Chen, H., Shen, C.: Directpose: direct end-to-end multi-person pose estimation. arXiv preprint arXiv:1911.07451 (2019)

  67. Tian, Z., Shen, C., Chen, H.: Conditional convolutions for instance segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 282–298. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_17

    Chapter  Google Scholar 

  68. Wang, D., Zhang, S.: Contextual instance decoupling for robust multi-person pose estimation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 11060–11068 (2022)

    Google Scholar 

  69. Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  70. Wang, Z., Zheng, L., Liu, Y., Li, Y., Wang, S.: Towards real-time multi-object tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 107–122. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_7

    Chapter  Google Scholar 

  71. Wei, F., Sun, X., Li, H., Wang, J., Lin, S.: Point-set anchors for object detection, instance segmentation and pose estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 527–544. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_31

    Chapter  Google Scholar 

  72. Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. In: IEEE International Conference on Image Processing, pp. 3645–3649 (2017)

    Google Scholar 

  73. Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking. In: European Conference on Computer Vision (2018)

    Google Scholar 

  74. Xie, E., et al.: Polarmask: single shot instance segmentation with polar representation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 12193–12202 (2020)

    Google Scholar 

  75. Xu, L., et al.: Vipnas: efficient video pose estimation via neural architecture search. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 16072–16081 (2021)

    Google Scholar 

  76. Xu, L., et al.: Zoomnas: searching for whole-body human pose estimation in the wild. IEEE Trans. Pattern Anal. Mach. Intell. 45(4), 5296–5313 (2022)

    Google Scholar 

  77. Xu, Y., Zhang, J., Zhang, Q., Tao, D.: Vitpose: simple vision transformer baselines for human pose estimation. Adv. Neural Inform. Process. Syst. 35, 38571–38584 (2022)

    Google Scholar 

  78. Xue, N., Wu, T., Xia, G.S., Zhang, L.: Learning local-global contextual adaptation for multi-person pose estimation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 13065–13074 (2022)

    Google Scholar 

  79. Yang, J., Zeng, A., Liu, S., Li, F., Zhang, R., Zhang, L.: Explicit box detection unifies end-to-end multi-person pose estimation. In: International Conference on Learning Representation (2023)

    Google Scholar 

  80. Zeng, W., et al.: Not all tokens are equal: human-centric visual analysis via token clustering transformer. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 11101–11111 (2022)

    Google Scholar 

  81. Zeng, W., Ouyang, W., Luo, P., Liu, W., Wang, X.: 3d human mesh regression with dense correspondence. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 7054–7063 (2020)

    Google Scholar 

  82. Zhang, H., et al.: Dino: detr with improved denoising anchor boxes for end-to-end object detection. In: International Conference on Learning Representation (2023)

    Google Scholar 

  83. Zhang, N., Paluri, M., Ranzato, M., Darrell, T., Bourdev, L.: Panda: pose aligned networks for deep attribute modeling. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1637–1644 (2014)

    Google Scholar 

  84. Zhang, R., Tian, Z., Shen, C., You, M., Yan, Y.: Mask encoding for single shot instance segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 10226–10235 (2020)

    Google Scholar 

  85. Zhang, S., Benenson, R., Schiele, B.: Citypersons: a diverse dataset for pedestrian detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3221 (2017)

    Google Scholar 

  86. Zhang, S.H., et al.: Pose2seg: detection free human instance segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 889–898 (2019)

    Google Scholar 

  87. Zhang, X., Ma, B., Chang, H., Shan, S., Chen, X.: Location sensitive network for human instance segmentation. IEEE Trans. Image Process. 30, 7649–7662 (2021)

    Article  Google Scholar 

  88. Zhang, Y., Zeng, W., Jin, S., Qian, C., Luo, P., Liu, W.: When pedestrian detection meets multi-modal learning: Generalist model and benchmark dataset. In: European Conference on Computer Vision (2024)

    Google Scholar 

  89. Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: on the fairness of detection and re-identification in multiple object tracking. Int. J. Comput. Vis. 129, 3069–3087 (2021)

    Article  Google Scholar 

  90. Zhang, Y., Liu, L., Li, C., Loy, C.C.: Quantifying facial age by posterior of age comparisons. In: British Machine Vision Conference (2017)

    Google Scholar 

  91. Zheng, A., Zhang, Y., Zhang, X., Qi, X., Sun, J.: Progressive end-to-end object detection in crowded scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 857–866 (2022)

    Google Scholar 

  92. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)

  93. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: deformable transformers for end-to-end object detection. In: International Conference on Learning Representation (2021)

    Google Scholar 

Download references

Acknowledgement

This paper is partially supported by the National Key R&D Program of China No.2022ZD0161000 and the General Research Fund of Hong Kong No.17200622 and 17209324.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng Jin or Wentao Liu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 30515 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jin, S., Li, S., Li, T., Liu, W., Qian, C., Luo, P. (2025). You Only Learn One Query: Learning Unified Human Query for Single-Stage Multi-person Multi-task Human-Centric Perception. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15076. Springer, Cham. https://doi.org/10.1007/978-3-031-72649-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72649-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72648-4

  • Online ISBN: 978-3-031-72649-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics