Skip to main content

Towards Real-World Adverse Weather Image Restoration: Enhancing Clearness and Semantics with Vision-Language Models

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15076))

Included in the following conference series:

Abstract

This paper addresses the limitations of adverse weather image restoration approaches trained on synthetic data when applied to real-world scenarios. We formulate a semi-supervised learning framework employing vision-language models to enhance restoration performance across diverse adverse weather conditions in real-world settings. Our approach involves assessing image clearness and providing semantics using vision-language models on real data, serving as supervision signals for training restoration models. For clearness enhancement, we use real-world data, utilizing a dual-step strategy with pseudo-labels assessed by vision-language models and weather prompt learning. For semantic enhancement, we integrate real-world data by adjusting weather conditions in vision-language model descriptions while preserving semantic meaning. Additionally, we introduce an effective training strategy to bootstrap restoration performance. Our approach achieves superior results in real-world adverse weather image restoration, demonstrated through qualitative and quantitative comparisons with state-of-the-art works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achiam, J., et al.: GPT-4 technical report (2023). arXiv preprint arXiv:2303.08774

  2. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: DehazeNet: an end-to-end system for single image haze removal. TIP 25(11), 5187–5198 (2016)

    Google Scholar 

  3. Chen, W.T., et al.: All snow removed: Single image desnowing algorithm using hierarchical dual-tree complex wavelet representation and contradict channel loss. In: ICCV (2021)

    Google Scholar 

  4. Chen, W.T., Huang, Z.K., Tsai, C.C., Yang, H.H., Ding, J.J., Kuo, S.Y.: Learning multiple adverse weather removal via two-stage knowledge learning and multi-contrastive regularization: toward a unified model. In: CVPR (2022)

    Google Scholar 

  5. Chen, Z., et al.: InternVL: scaling up vision foundation models and aligning for generic visual-linguistic tasks. In: CVPR (2024)

    Google Scholar 

  6. Deng, Z., et al.: Deep multi-model fusion for single-image dehazing. In: ICCV (2019)

    Google Scholar 

  7. Fu, X., Huang, J., Zeng, D., Huang, Y., Ding, X., Paisley, J.: Removing rain from single images via a deep detail network. In: CVPR (2017)

    Google Scholar 

  8. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. TPAMI 33(12), 2341–2353 (2010)

    Google Scholar 

  9. Hu, X., Fu, C.W., Zhu, L., Heng, P.A.: Depth-attentional features for single-image rain removal. In: CVPR (2019)

    Google Scholar 

  10. Hu, X., Zhu, L., Wang, T., Fu, C.W., Heng, P.A.: Single-image real-time rain removal based on depth-guided non-local features. TIP 30, 1759–1770 (2021)

    Google Scholar 

  11. Huang, S., Wang, K., Liu, H., Chen, J., Li, Y.: Contrastive semi-supervised learning for underwater image restoration via reliable bank. In: CVPR (2023)

    Google Scholar 

  12. Jiang, K., et al.: Multi-scale progressive fusion network for single image deraining. In: CVPR (2020)

    Google Scholar 

  13. Jiang, Y., Zhang, Z., Xue, T., Gu, J.: AutoDIR: Automatic all-in-one image restoration with latent diffusion (2023). arXiv preprint arXiv:2310.10123

  14. Ke, J., Wang, Q., Wang, Y., Milanfar, P., Yang, F.: MUSIQ: multi-scale image quality transformer. In: ICCV (2021)

    Google Scholar 

  15. Li, B., et al.: Benchmarking single-image dehazing and beyond. TIP 28(1), 492–505 (2018)

    Google Scholar 

  16. Li, R., Cheong, L.F., Tan, R.T.: Heavy rain image restoration: integrating physics model and conditional adversarial learning. In: CVPR (2019)

    Google Scholar 

  17. Li, R., Tan, R.T., Cheong, L.F.: All in one bad weather removal using architectural search. In: CVPR (2020)

    Google Scholar 

  18. Liang, Z., Li, C., Zhou, S., Feng, R., Loy, C.C.: Iterative prompt learning for unsupervised backlit image enhancement. In: ICCV (2023)

    Google Scholar 

  19. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: CVPRW (2017)

    Google Scholar 

  20. Liu, H., Li, C., Li, Y., Lee, Y.J.: Improved baselines with visual instruction tuning. In: CVPR (2024)

    Google Scholar 

  21. Liu, H., et al.: LLaVA-NeXT: Improved reasoning, OCR, and world knowledge (2024). https://llava-vl.github.io/blog/2024-01-30-llava-next/

  22. Liu, H., Li, C., Wu, Q., Lee, Y.J.: Visual instruction tuning. In: NeurIPS (2023)

    Google Scholar 

  23. Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: ICCV (2021)

    Google Scholar 

  24. Liu, Y.F., Jaw, D.W., Huang, S.C., Hwang, J.N.: DesnowNet: context-aware deep network for snow removal. TIP 27(6), 3064–3073 (2018)

    Google Scholar 

  25. Luo, Z., Gustafsson, F.K., Zhao, Z., Sjölund, J., Schön, T.B.: Controlling vision-language models for universal image restoration. In: ICLR (2024)

    Google Scholar 

  26. Mann, B., et al.: Language models are few-shot learners. In: NeurIPS (2020)

    Google Scholar 

  27. Özdenizci, O., Legenstein, R.: Restoring vision in adverse weather conditions with patch-based denoising diffusion models. TPAMI 45(8), 10346–10357 (2023)

    Google Scholar 

  28. Patil, P.W., Gupta, S., Rana, S., Venkatesh, S., Murala, S.: Multi-weather image restoration via domain translation. In: ICCV (2023)

    Google Scholar 

  29. Potlapalli, V., Zamir, S.W., Khan, S., Khan, F.S.: PromptIR: prompting for all-in-one blind image restoration. In: NeruIPS (2023)

    Google Scholar 

  30. Qian, R., Tan, R.T., Yang, W., Su, J., Liu, J.: Attentive generative adversarial network for raindrop removal from a single image. In: CVPR (2018)

    Google Scholar 

  31. Qin, X., Wang, Z., Bai, Y., Xie, X., Jia, H.: FFA-Net: feature fusion attention network for single image dehazing. In: AAAI (2020)

    Google Scholar 

  32. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML (2021)

    Google Scholar 

  33. Richardson, E., Goldberg, K., Alaluf, Y., Cohen-Or, D.: ConceptLab: Creative generation using diffusion prior constraints (2023). arXiv preprint arXiv:2308.02669

  34. Song, Y., He, Z., Qian, H., Du, X.: Vision transformers for single image dehazing. TIP 32, 1927–1941 (2023)

    Google Scholar 

  35. Sun, Q., et al.: Generative multimodal models are in-context learners. In: CVPR (2024)

    Google Scholar 

  36. Talebi, H., Milanfar, P.: NIMA: Neural image assessment. TIP 27(8), 3998–4011 (2018)

    Google Scholar 

  37. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: NeruIPS (2017)

    Google Scholar 

  38. Timofte, R., Agustsson, E., Van Gool, L., Yang, M.H., Zhang, L.: NTIRE 2017 challenge on single image super-resolution: methods and results. In: CVPRW (2017)

    Google Scholar 

  39. Touvron, H., et al.: LLaMA: Open and efficient foundation language models (2023). arXiv preprint arXiv:2302.13971

  40. Valanarasu, J.M.J., Yasarla, R., Patel, V.M.: TransWeather: transformer-based restoration of images degraded by adverse weather conditions. In: CVPR (2022)

    Google Scholar 

  41. Wang, J., Chan, K.C., Loy, C.C.: Exploring clip for assessing the look and feel of images. In: AAAI (2023)

    Google Scholar 

  42. Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: CVPR (2019)

    Google Scholar 

  43. Wang, X., Xie, L., Yu, K., Chan, K.C., Loy, C.C., Dong, C.: BasicSR: Open source image and video restoration toolbox (2022). https://github.com/XPixelGroup/BasicSR

  44. Wang, Y., Ma, C., Liu, J.: SmartAssign: learning a smart knowledge assignment strategy for deraining and desnowing. In: CVPR (2023)

    Google Scholar 

  45. Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: CVPR (2019)

    Google Scholar 

  46. Wu, H., et al.: Q-bench: a benchmark for general-purpose foundation models on low-level vision. In: ICLR (2024)

    Google Scholar 

  47. Wu, H., et al.: Q-align: teaching LMMs for visual scoring via discrete text-defined levels. In: ICML (2024)

    Google Scholar 

  48. Xiao, J., Fu, X., Liu, A., Wu, F., Zha, Z.J.: Image de-raining transformer. TPAMI 45(11), 12978–12995 (2022)

    Google Scholar 

  49. Xu, J., et al.: Video dehazing via a multi-range temporal alignment network with physical prior. In: CVPR (2023)

    Google Scholar 

  50. Yang, L., Kang, B., Huang, Z., Xu, X., Feng, J., Zhao, H.: Depth anything: unleashing the power of large-scale unlabeled data. In: CVPR (2024)

    Google Scholar 

  51. Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z., Yan, S.: Deep joint rain detection and removal from a single image. In: CVPR (2017)

    Google Scholar 

  52. Ye, Q., et al.: mPLUG-Owl2: revolutionizing multi-modal large language model with modality collaboration. In: CVPR (2024)

    Google Scholar 

  53. Ye, T., et al.: Adverse weather removal with codebook priors. In: ICCV (2023)

    Google Scholar 

  54. Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: Restormer: efficient transformer for high-resolution image restoration. In: CVPR (2022)

    Google Scholar 

  55. Zhang, H., et al.: WeatherStream: light transport automation of single image deweathering. In: CVPR (2023)

    Google Scholar 

  56. Zhang, W., Zhai, G., Wei, Y., Yang, X., Ma, K.: Blind image quality assessment via vision-language correspondence: a multitask learning perspective. In: CVPR (2023)

    Google Scholar 

  57. Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Learning to prompt for vision-language models. IJCV 130(9), 2337–2348 (2022)

    Google Scholar 

  58. Zhu, L., et al.: Learning gated non-local residual for single-image rain streak removal. TCSVT 31(6), 2147–2159 (2020)

    Google Scholar 

  59. Zhu, Y., et al.: Learning weather-general and weather-specific features for image restoration under multiple adverse weather conditions. In: CVPR (2023)

    Google Scholar 

Download references

Acknowledgements

The work was supported by the National Key R&D Program of China (Grant No. 2022ZD0160100), the Research Grants Council of the Hong Kong Special Administrative Region, China (Grant No. 14201620), and the Hong Kong Innovation and Technology Fund (Grant No. MHP/092/22).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowei Hu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 30799 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, J., Wu, M., Hu, X., Fu, CW., Dou, Q., Heng, PA. (2025). Towards Real-World Adverse Weather Image Restoration: Enhancing Clearness and Semantics with Vision-Language Models. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15076. Springer, Cham. https://doi.org/10.1007/978-3-031-72649-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72649-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72648-4

  • Online ISBN: 978-3-031-72649-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics