Skip to main content

Spectral Subsurface Scattering for Material Classification

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

This study advances material classification using Spectral Sub-Surface Scattering (\(\mathcal {S}^{4}\)) measurements. While spectrum and subsurface scattering measurements have individually been used in material classification, we argue that the strong spectral dependence of subsurface scattering lends itself to highly discriminative features. However, obtaining \(\mathcal {S}^{4}\) measurements requires a time-consuming hyperspectral scan. We avoid this by showing that a carefully chosen 2D projection of the \(\mathcal {S}^{4}\) point spread function is sufficient for material estimation. We also design and implement a novel imaging setup, consisting of a point illumination and a spectrally-dispersing camera, to make the desired 2D projections. Finally, through comprehensive experiments, we demonstrate the superiority of \(\mathcal {S}^{4}\) imaging over spectral and sub-surface scattering measurements for the task of material classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Grism (wikipedia article). https://en.wikipedia.org/wiki/Grism

  2. Cao, X., Du, H., Tong, X., Dai, Q., Lin, S.: A prism-mask system for multispectral video acquisition. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2423–2435 (2011)

    Article  Google Scholar 

  3. Cen, H., Lu, R., Dolan, K.: Optimization of inverse algorithm for estimating the optical properties of biological materials using spatially-resolved diffuse reflectance. Inverse Problems Sci. Eng. 18(6), 853–872 (2010)

    Article  Google Scholar 

  4. Chandrasekhar, S.: Radiative transfer. Courier Corporation (2013)

    Google Scholar 

  5. Che, C., Luan, F., Zhao, S., Bala, K., Gkioulekas, I.: Towards learning-based inverse subsurface scattering. In: IEEE Int. Conf. Comput. Photography (ICCP), pp. 1–12 (2020)

    Google Scholar 

  6. Conde, M.H.: A material-sensing time-of-flight camera. IEEE Sens. Lett. 4(7), 1–4 (2020)

    Article  Google Scholar 

  7. Dave, J.: Determination of size distribution of spherical polydispersions using scattered radiation data. Appl. Opt. 10(9), 2035–2044 (1971)

    Article  Google Scholar 

  8. Delta Optical Thin Film A/S: Continuously Variable Filters. https://deltaopticalthinfilm.com/products/continuously-variable-filters/

  9. Deshpande, S., Inamdar, A., Vin, H.: Spectral library and discrimination analysis of Indian Urban materials. J. Indian Soc. Remote Sens. 47, 867–877 (2019)

    Article  Google Scholar 

  10. Donner, C., Jensen, H.W.: Light diffusion in multi-layered translucent materials. ACM Trans. Graph. 24(3), 1032–1039 (2005)

    Article  Google Scholar 

  11. Doornbos, R., Lang, R., Aalders, M., Cross, F., Sterenborg, H.: The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy. Phys. Med. Biol. 44(4), 967 (1999)

    Article  Google Scholar 

  12. Farrell, T.J., Patterson, M.S., Wilson, B.: A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. Med. Phys. 19(4), 879–888 (1992)

    Article  Google Scholar 

  13. Frisvad, J.R., Christensen, N.J., Jensen, H.W.: Computing the scattering properties of participating media using lorenz-mie theory. ACM Trans. Graph. (Proc. SIGGRAPH), 60–es (2007)

    Google Scholar 

  14. Geelen, B., Blanch, C., Gonzalez, P., Tack, N., Lambrechts, A.: A tiny vis-nir snapshot multispectral camera. Adv. Fabric. Technol. Micro/Nano Opt. Photon. VIII. 9374, 194–201 (2015)

    Google Scholar 

  15. Gobin, L., Blanchot, L., Saint-Jalmes, H.: Integrating the digitized backscattered image to measure absorption and reduced-scattering coefficients in vivo. Appl. Opt. 38(19), 4217–4227 (1999)

    Article  Google Scholar 

  16. Groenhuis, R., Ferwerda, H.A., Ten Bosch, J.: Scattering and absorption of turbid materials determined from reflection measurements. 1: Theory. Appl. Optics 22(16), 2456–2462 (1983)

    Google Scholar 

  17. Hahn, D.W.: Light scattering theory. Department of Mechanical and Aerospace Engineering, University of Florida, p. 18 (2009)

    Google Scholar 

  18. Hege, E.K., O’Connell, D., Johnson, W., Basty, S., Dereniak, E.L.: Hyperspectral imaging for astronomy and space surveillance. In: Imaging Spectrom. IX, vol. 5159, pp. 380–391. SPIE (2004)

    Google Scholar 

  19. Heiden, U., Segl, K., Roessner, S., Kaufmann, H.: Determination of robust spectral features for identification of urban surface materials in hyperspectral remote sensing data. Remote Sens. Environ. 111, 537–552 (2007)

    Article  Google Scholar 

  20. Ibrahim, A., Tominaga, S., Horiuchi, T.: Material classification for printed circuit boards by spectral imaging system. In: Trémeau, A., Schettini, R., Tominaga, S. (eds.) CCIW 2009. LNCS, vol. 5646, pp. 216–225. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03265-3_23

  21. Johnson, W.R., Wilson, D.W., Fink, W., Humayun, M., Bearman, G.: Snapshot hyperspectral imaging in ophthalmology. J. Biomed. Opt. 12(1), 014036–014036 (2007)

    Article  Google Scholar 

  22. Le Bris, A., Chehata, N., Briottet, X., Paparoditis, N.: Spectral band selection for urban material classification using hyperspectral libraries. In: 23. ISPRS Congress, vol. 3, p. np (2016)

    Google Scholar 

  23. Lee, H., Kim, M.H.: Building a two-way hyperspectral imaging system with liquid crystal tunable filters. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2014. LNCS, vol. 8509, pp. 26–34. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07998-1_4

    Chapter  Google Scholar 

  24. Lee, H., Sankaranarayanan, A.C.: Spectral Subsurface Scattering for Material Classification (2024). https://github.com/Image-Science-Lab-cmu/S4Imaging

  25. Liang, Y., Wakaki, R., Nobuhara, S., Nishino, K.: Multimodal material segmentation. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19800–19808 (2022)

    Google Scholar 

  26. Mao, S., Ji, M., Wang, B., Dai, Q., Fang, L.: Surface material perception through multimodal learning. IEEE J. Sel. Topics Signal Process. 16(4), 843–853 (2022)

    Article  Google Scholar 

  27. Mie, G.: Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Ann. Phys. 330(3), 377–445 (1908)

    Article  Google Scholar 

  28. Mohamed, M.Y., Solihin, M.I., Astuti, W., Ang, C., Zailah, W.: Food powders classification using handheld near-infrared spectroscopy and support vector machine. J. Phys.: Conf. Ser. 1367 (2019)

    Google Scholar 

  29. Nawrocka, A., Lamorska, J.: Determination of food quality by using spectroscopic methods. In: Advances in Agrophysical Research. IntechOpen (2013)

    Google Scholar 

  30. Nayar, S.K., Krishnan, G., Grossberg, M.D., Raskar, R.: Fast separation of direct and global components of a scene using high frequency illumination. ACM Trans. Graph. (Proc. SIGGRAPH), 935–944 (2006)

    Google Scholar 

  31. Nichols, M.G., Hull, E.L., Foster, T.H.: Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems. Appl. Opt. 36(1), 93–104 (1997)

    Article  Google Scholar 

  32. Peng, Y., Lu, R.: Analysis of spatially resolved hyperspectral scattering images for assessing apple fruit firmness and soluble solids content. Postharvest Biol. Technol. 48(1), 52–62 (2008)

    Article  Google Scholar 

  33. Pichette, J., Charle, W., Lambrechts, A.: Fast and compact internal scanning cmos-based hyperspectral camera: the snapscan. Photonic Instrum. Eng. IV 10110, 292–301 (2017)

    Google Scholar 

  34. Sahoo, S.K., Tang, D., Dang, C.: Single-shot multispectral imaging with a monochromatic camera. Optica 4(10), 1209–1213 (2017)

    Article  Google Scholar 

  35. Salamati, N., Fredembach, C., Süsstrunk, S.: Material classification using color and nir images. In: Proceedings of IS &T/SID 17th Color Imaging Conference (CIC) (2009)

    Google Scholar 

  36. Scholl, J.F., Hege, E.K., Hart, M., O’Connell, D., Dereniak, E.L.: Flash hyperspectral imaging of non-stellar astronomical objects. In: Mathematics of Data/Image Pattern Recognition, Compression, and Encryption with Applications XIm vol. 7075, pp. 145–156. SPIE (2008)

    Google Scholar 

  37. Sindhusha, S., Padma, C., Thayanithi, V.: Experimental and theoretical investigations of organic creatininium 2-chloroacetate nonlinear optical single crystal. J. Mater. Sci.: Mater. Electron. 32, 6498–6510 (2021)

    Google Scholar 

  38. Steimle, J., Jordt, A., Maes, P.: Flexpad: highly flexible bending interactions for projected handheld displays. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 237–246 (2013)

    Google Scholar 

  39. Su, S., Heide, F., Swanson, R., Klein, J., Callenberg, C., Hullin, M., Heidrich, W.: Material classification using raw time-of-flight measurements. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  40. Tanaka, K., Mukaigawa, Y., Funatomi, T., Kubo, H., Matsushita, Y., Yagi, Y.: Material classification using frequency- and depth-dependent time-of-flight distortion. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  41. Tanaka, K., Mukaigawa, Y., Funatomi, T., Kubo, H., Matsushita, Y., Yagi, Y.: Material classification from time-of-flight distortions. IEEE Trans. Pattern Anal. Mach. Intell. 41(12), 2906–2918 (2019)

    Article  Google Scholar 

  42. Wagadarikar, A., John, R., Willett, R., Brady, D.: Single disperser design for coded aperture snapshot spectral imaging. Appl. Opt. 47(10), B44–B51 (2008)

    Article  Google Scholar 

  43. Wang, L., Jacques, S.L., Zheng, L.: Mcml-monte carlo modeling of light transport in multi-layered tissues. Comput. Methods Programs Biomed. 47(2), 131–146 (1995)

    Article  Google Scholar 

  44. Wang, W., Paliwal, J.: Near-infrared spectroscopy and imaging in food quality and safety. Sens. Instrum. Food Qual. Saf. 1, 193–207 (2007)

    Article  Google Scholar 

  45. Wann Jensen, H., Marschner, S.R., Levoy, M., Hanrahan, P.: A practical model for subsurface light transport. In: Seminal Graphics Papers: Pushing the Boundaries, Volume 2, pp. 319–326 (2023)

    Google Scholar 

  46. Wu, J., Peng, Y., Li, Y., Wang, W., Chen, J., Dhakal, S.: Prediction of beef quality attributes using vis/nir hyperspectral scattering imaging technique. J. Food Eng. 109(2), 267–273 (2012)

    Article  Google Scholar 

  47. Zhi, T., Pires, B.R., Hebert, M., Narasimhan, S.G.: Multispectral imaging for fine-grained recognition of powders on complex backgrounds. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  48. Zhu, Q., Xing, Y., Lu, R., Huang, M., Ng, P.K.: Visible/shortwave near infrared spectroscopy and hyperspectral scattering for determining bulk density and particle size of wheat flour. J. Near Infrared Spectrosc. 25(2), 116–126 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Geospatial-Intelligence Agency’s Academic Research Program (Grant# HM0476-22-1-0004). The views expressed in this paper do not necessarily reflect those of the National Geospatial-Intelligence Agency, the Department of Defense, or any other department or agency of the US Government. The authors were also supported in part by a Sony Faculty Innovation Award, a grant from the Commonwealth of Pennsylvania, Department of Community and Economic Development, and a TCS Presidential Fellowship. The authors thank collaborators at Sony Corp., specifically, Ryuichi Tadano, Tuo Zhuang, Koya Kobayashi, Ilya Reshetouski, Hideki Oyaizu, and Jun Murayama, for valuable discussions leading to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haejoon Lee .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 80798 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, H., Sankaranarayanan, A.C. (2025). Spectral Subsurface Scattering for Material Classification. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15063. Springer, Cham. https://doi.org/10.1007/978-3-031-72652-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72652-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72651-4

  • Online ISBN: 978-3-031-72652-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics