Abstract
This study advances material classification using Spectral Sub-Surface Scattering (\(\mathcal {S}^{4}\)) measurements. While spectrum and subsurface scattering measurements have individually been used in material classification, we argue that the strong spectral dependence of subsurface scattering lends itself to highly discriminative features. However, obtaining \(\mathcal {S}^{4}\) measurements requires a time-consuming hyperspectral scan. We avoid this by showing that a carefully chosen 2D projection of the \(\mathcal {S}^{4}\) point spread function is sufficient for material estimation. We also design and implement a novel imaging setup, consisting of a point illumination and a spectrally-dispersing camera, to make the desired 2D projections. Finally, through comprehensive experiments, we demonstrate the superiority of \(\mathcal {S}^{4}\) imaging over spectral and sub-surface scattering measurements for the task of material classification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Grism (wikipedia article). https://en.wikipedia.org/wiki/Grism
Cao, X., Du, H., Tong, X., Dai, Q., Lin, S.: A prism-mask system for multispectral video acquisition. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2423–2435 (2011)
Cen, H., Lu, R., Dolan, K.: Optimization of inverse algorithm for estimating the optical properties of biological materials using spatially-resolved diffuse reflectance. Inverse Problems Sci. Eng. 18(6), 853–872 (2010)
Chandrasekhar, S.: Radiative transfer. Courier Corporation (2013)
Che, C., Luan, F., Zhao, S., Bala, K., Gkioulekas, I.: Towards learning-based inverse subsurface scattering. In: IEEE Int. Conf. Comput. Photography (ICCP), pp. 1–12 (2020)
Conde, M.H.: A material-sensing time-of-flight camera. IEEE Sens. Lett. 4(7), 1–4 (2020)
Dave, J.: Determination of size distribution of spherical polydispersions using scattered radiation data. Appl. Opt. 10(9), 2035–2044 (1971)
Delta Optical Thin Film A/S: Continuously Variable Filters. https://deltaopticalthinfilm.com/products/continuously-variable-filters/
Deshpande, S., Inamdar, A., Vin, H.: Spectral library and discrimination analysis of Indian Urban materials. J. Indian Soc. Remote Sens. 47, 867–877 (2019)
Donner, C., Jensen, H.W.: Light diffusion in multi-layered translucent materials. ACM Trans. Graph. 24(3), 1032–1039 (2005)
Doornbos, R., Lang, R., Aalders, M., Cross, F., Sterenborg, H.: The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy. Phys. Med. Biol. 44(4), 967 (1999)
Farrell, T.J., Patterson, M.S., Wilson, B.: A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. Med. Phys. 19(4), 879–888 (1992)
Frisvad, J.R., Christensen, N.J., Jensen, H.W.: Computing the scattering properties of participating media using lorenz-mie theory. ACM Trans. Graph. (Proc. SIGGRAPH), 60–es (2007)
Geelen, B., Blanch, C., Gonzalez, P., Tack, N., Lambrechts, A.: A tiny vis-nir snapshot multispectral camera. Adv. Fabric. Technol. Micro/Nano Opt. Photon. VIII. 9374, 194–201 (2015)
Gobin, L., Blanchot, L., Saint-Jalmes, H.: Integrating the digitized backscattered image to measure absorption and reduced-scattering coefficients in vivo. Appl. Opt. 38(19), 4217–4227 (1999)
Groenhuis, R., Ferwerda, H.A., Ten Bosch, J.: Scattering and absorption of turbid materials determined from reflection measurements. 1: Theory. Appl. Optics 22(16), 2456–2462 (1983)
Hahn, D.W.: Light scattering theory. Department of Mechanical and Aerospace Engineering, University of Florida, p. 18 (2009)
Hege, E.K., O’Connell, D., Johnson, W., Basty, S., Dereniak, E.L.: Hyperspectral imaging for astronomy and space surveillance. In: Imaging Spectrom. IX, vol. 5159, pp. 380–391. SPIE (2004)
Heiden, U., Segl, K., Roessner, S., Kaufmann, H.: Determination of robust spectral features for identification of urban surface materials in hyperspectral remote sensing data. Remote Sens. Environ. 111, 537–552 (2007)
Ibrahim, A., Tominaga, S., Horiuchi, T.: Material classification for printed circuit boards by spectral imaging system. In: Trémeau, A., Schettini, R., Tominaga, S. (eds.) CCIW 2009. LNCS, vol. 5646, pp. 216–225. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03265-3_23
Johnson, W.R., Wilson, D.W., Fink, W., Humayun, M., Bearman, G.: Snapshot hyperspectral imaging in ophthalmology. J. Biomed. Opt. 12(1), 014036–014036 (2007)
Le Bris, A., Chehata, N., Briottet, X., Paparoditis, N.: Spectral band selection for urban material classification using hyperspectral libraries. In: 23. ISPRS Congress, vol. 3, p. np (2016)
Lee, H., Kim, M.H.: Building a two-way hyperspectral imaging system with liquid crystal tunable filters. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2014. LNCS, vol. 8509, pp. 26–34. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07998-1_4
Lee, H., Sankaranarayanan, A.C.: Spectral Subsurface Scattering for Material Classification (2024). https://github.com/Image-Science-Lab-cmu/S4Imaging
Liang, Y., Wakaki, R., Nobuhara, S., Nishino, K.: Multimodal material segmentation. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19800–19808 (2022)
Mao, S., Ji, M., Wang, B., Dai, Q., Fang, L.: Surface material perception through multimodal learning. IEEE J. Sel. Topics Signal Process. 16(4), 843–853 (2022)
Mie, G.: Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Ann. Phys. 330(3), 377–445 (1908)
Mohamed, M.Y., Solihin, M.I., Astuti, W., Ang, C., Zailah, W.: Food powders classification using handheld near-infrared spectroscopy and support vector machine. J. Phys.: Conf. Ser. 1367 (2019)
Nawrocka, A., Lamorska, J.: Determination of food quality by using spectroscopic methods. In: Advances in Agrophysical Research. IntechOpen (2013)
Nayar, S.K., Krishnan, G., Grossberg, M.D., Raskar, R.: Fast separation of direct and global components of a scene using high frequency illumination. ACM Trans. Graph. (Proc. SIGGRAPH), 935–944 (2006)
Nichols, M.G., Hull, E.L., Foster, T.H.: Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems. Appl. Opt. 36(1), 93–104 (1997)
Peng, Y., Lu, R.: Analysis of spatially resolved hyperspectral scattering images for assessing apple fruit firmness and soluble solids content. Postharvest Biol. Technol. 48(1), 52–62 (2008)
Pichette, J., Charle, W., Lambrechts, A.: Fast and compact internal scanning cmos-based hyperspectral camera: the snapscan. Photonic Instrum. Eng. IV 10110, 292–301 (2017)
Sahoo, S.K., Tang, D., Dang, C.: Single-shot multispectral imaging with a monochromatic camera. Optica 4(10), 1209–1213 (2017)
Salamati, N., Fredembach, C., Süsstrunk, S.: Material classification using color and nir images. In: Proceedings of IS &T/SID 17th Color Imaging Conference (CIC) (2009)
Scholl, J.F., Hege, E.K., Hart, M., O’Connell, D., Dereniak, E.L.: Flash hyperspectral imaging of non-stellar astronomical objects. In: Mathematics of Data/Image Pattern Recognition, Compression, and Encryption with Applications XIm vol. 7075, pp. 145–156. SPIE (2008)
Sindhusha, S., Padma, C., Thayanithi, V.: Experimental and theoretical investigations of organic creatininium 2-chloroacetate nonlinear optical single crystal. J. Mater. Sci.: Mater. Electron. 32, 6498–6510 (2021)
Steimle, J., Jordt, A., Maes, P.: Flexpad: highly flexible bending interactions for projected handheld displays. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 237–246 (2013)
Su, S., Heide, F., Swanson, R., Klein, J., Callenberg, C., Hullin, M., Heidrich, W.: Material classification using raw time-of-flight measurements. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)
Tanaka, K., Mukaigawa, Y., Funatomi, T., Kubo, H., Matsushita, Y., Yagi, Y.: Material classification using frequency- and depth-dependent time-of-flight distortion. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)
Tanaka, K., Mukaigawa, Y., Funatomi, T., Kubo, H., Matsushita, Y., Yagi, Y.: Material classification from time-of-flight distortions. IEEE Trans. Pattern Anal. Mach. Intell. 41(12), 2906–2918 (2019)
Wagadarikar, A., John, R., Willett, R., Brady, D.: Single disperser design for coded aperture snapshot spectral imaging. Appl. Opt. 47(10), B44–B51 (2008)
Wang, L., Jacques, S.L., Zheng, L.: Mcml-monte carlo modeling of light transport in multi-layered tissues. Comput. Methods Programs Biomed. 47(2), 131–146 (1995)
Wang, W., Paliwal, J.: Near-infrared spectroscopy and imaging in food quality and safety. Sens. Instrum. Food Qual. Saf. 1, 193–207 (2007)
Wann Jensen, H., Marschner, S.R., Levoy, M., Hanrahan, P.: A practical model for subsurface light transport. In: Seminal Graphics Papers: Pushing the Boundaries, Volume 2, pp. 319–326 (2023)
Wu, J., Peng, Y., Li, Y., Wang, W., Chen, J., Dhakal, S.: Prediction of beef quality attributes using vis/nir hyperspectral scattering imaging technique. J. Food Eng. 109(2), 267–273 (2012)
Zhi, T., Pires, B.R., Hebert, M., Narasimhan, S.G.: Multispectral imaging for fine-grained recognition of powders on complex backgrounds. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)
Zhu, Q., Xing, Y., Lu, R., Huang, M., Ng, P.K.: Visible/shortwave near infrared spectroscopy and hyperspectral scattering for determining bulk density and particle size of wheat flour. J. Near Infrared Spectrosc. 25(2), 116–126 (2017)
Acknowledgements
This work was supported in part by the National Geospatial-Intelligence Agency’s Academic Research Program (Grant# HM0476-22-1-0004). The views expressed in this paper do not necessarily reflect those of the National Geospatial-Intelligence Agency, the Department of Defense, or any other department or agency of the US Government. The authors were also supported in part by a Sony Faculty Innovation Award, a grant from the Commonwealth of Pennsylvania, Department of Community and Economic Development, and a TCS Presidential Fellowship. The authors thank collaborators at Sony Corp., specifically, Ryuichi Tadano, Tuo Zhuang, Koya Kobayashi, Ilya Reshetouski, Hideki Oyaizu, and Jun Murayama, for valuable discussions leading to this work.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lee, H., Sankaranarayanan, A.C. (2025). Spectral Subsurface Scattering for Material Classification. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15063. Springer, Cham. https://doi.org/10.1007/978-3-031-72652-1_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-72652-1_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72651-4
Online ISBN: 978-3-031-72652-1
eBook Packages: Computer ScienceComputer Science (R0)