Skip to main content

NeuSDFusion: A Spatial-Aware Generative Model for 3D Shape Completion, Reconstruction, and Generation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15077))

Included in the following conference series:

  • 347 Accesses

Abstract

3D shape generation aims to produce innovative 3D content adhering to specific conditions and constraints. Existing methods often decompose 3D shapes into a sequence of localized components, treating each element in isolation without considering spatial consistency. As a result, these approaches exhibit limited versatility in 3D data representation and shape generation, hindering their ability to generate highly diverse 3D shapes that comply with the specified constraints. In this paper, we introduce a novel spatial-aware 3D shape generation framework that leverages 2D plane representations for enhanced 3D shape modeling. To ensure spatial coherence and reduce memory usage, we incorporate a hybrid shape representation technique that directly learns a continuous signed distance field representation of the 3D shape using orthogonal 2D planes. Additionally, we meticulously enforce spatial correspondences across distinct planes using a transformer-based autoencoder structure, promoting the preservation of spatial relationships in the generated 3D shapes. This yields an algorithm that consistently outperforms state-of-the-art 3D shape generation methods on various tasks, including unconditional shape generation, multi-modal shape completion, single-view reconstruction, and text-to-shape synthesis. Our project page is available at https://weizheliu.github.io/NeuSDFusion/.

R. Cui—The contribution of Ruikai Cui, Han Yan and Zhennan Wu was made during an internship at Tencent XR Vision Labs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations and generative models for 3d point clouds. In: International Conference on Machine Learning, pp. 40–49. PMLR (2018)

    Google Scholar 

  2. Achlioptas, P., Fan, J., Hawkins, R., Goodman, N., Guibas, L.J.: Shapeglot: learning language for shape differentiation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8938–8947 (2019)

    Google Scholar 

  3. Alliegro, A., Siddiqui, Y., Tommasi, T., Nießner, M.: Polydiff: generating 3D polygonal meshes with diffusion models. arXiv preprint arXiv:2312.11417 (2023)

  4. Chan, E.R., et al.: Efficient geometry-aware 3D generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16123–16133 (2022)

    Google Scholar 

  5. Chang, A.X., et al.: Shapenet: an information-rich 3D model repository. arXiv preprint arXiv:1512.03012 (2015)

  6. Chen, H., et al.: Single-stage diffusion nerf: a unified approach to 3d generation and reconstruction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2416–2425 (2023)

    Google Scholar 

  7. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5939–5948 (2019)

    Google Scholar 

  8. Cheng, Y.C., Lee, H.Y., Tulyakov, S., Schwing, A.G., Gui, L.Y.: Sdfusion: multimodal 3D shape completion, reconstruction, and generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4456–4465 (2023)

    Google Scholar 

  9. Chou, G., Bahat, Y., Heide, F.: Diffusion-sdf: conditional generative modeling of signed distance functions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2262–2272 (2023)

    Google Scholar 

  10. Cui, R., et al.: P2C: self-supervised point cloud completion from single partial clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14351–14360 (2023)

    Google Scholar 

  11. Cui, R., Qiu, S., Anwar, S., Zhang, J., Barnes, N.: Energy-based residual latent transport for unsupervised point cloud completion. arXiv preprint arXiv:2211.06820 (2022)

  12. Cui, R., et al.: LAM3D: large image-point-cloud alignment model for 3d reconstruction from single image. arXiv preprint arXiv:2405.15622 (2024)

  13. Erkoç, Z., Ma, F., Shan, Q., Nießner, M., Dai, A.: Hyperdiffusion: generating implicit neural fields with weight-space diffusion. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14300–14310 (2023)

    Google Scholar 

  14. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object reconstruction from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 605–613 (2017)

    Google Scholar 

  15. Gao, J., et al.: GET3D: a generative model of high quality 3D textured shapes learned from images. Adv. Neural Inf. Process. Syst. 35, 31841–31854 (2022)

    Google Scholar 

  16. Gao, L., Wu, T., Yuan, Y.J., Lin, M.X., Lai, Y.K., Zhang, H.: TM-NET: deep generative networks for textured meshes. ACM Trans. Graph. (TOG) 40(6), 1–15 (2021)

    Article  Google Scholar 

  17. Gupta, A., Xiong, W., Nie, Y., Jones, I., Oğuz, B.: 3DGEN: triplane latent diffusion for textured mesh generation. arXiv preprint arXiv:2303.05371 (2023)

  18. Ho, J., Salimans, T.: Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598 (2022)

  19. Hong, Y., et al.: LRM: large reconstruction model for single image to 3D. arxiv preprint arXiv:2311.04400 (2023)

  20. Hui, K.H., Li, R., Hu, J., Fu, C.W.: Neural wavelet-domain diffusion for 3D shape generation. In: SIGGRAPH Asia 2022 Conference Papers, pp. 1–9 (2022)

    Google Scholar 

  21. Karnewar, A., Vedaldi, A., Novotny, D., Mitra, N.J.: Holodiffusion: training a 3D diffusion model using 2D images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18423–18433 (2023)

    Google Scholar 

  22. Kim, J., Yoo, J., Lee, J., Hong, S.: Setvae: learning hierarchical composition for generative modeling of set-structured data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15059–15068 (2021)

    Google Scholar 

  23. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  24. Li, Y., et al.: Generalized deep 3D shape prior via part-discretized diffusion process. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16784–16794 (2023)

    Google Scholar 

  25. Liu, R., Wu, R., Van Hoorick, B., Tokmakov, P., Zakharov, S., Vondrick, C.: Zero-1-to-3: zero-shot one image to 3D object. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9298–9309 (2023)

    Google Scholar 

  26. Liu, Z., Feng, Y., Black, M.J., Nowrouzezahrai, D., Paull, L., Liu, W.: Meshdiffusion: score-based generative 3d mesh modeling. In: The Eleventh International Conference on Learning Representations (2022)

    Google Scholar 

  27. Liu, Z., Wang, Y., Qi, X., Fu, C.W.: Towards implicit text-guided 3d shape generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17896–17906 (2022)

    Google Scholar 

  28. Lopez-Paz, D., Oquab, M.: Revisiting classifier two-sample tests. In: International Conference on Learning Representations (2016)

    Google Scholar 

  29. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. In: Seminal Graphics: Pioneering Efforts that Shaped the Field, pp. 347–353. ACM SIGGRAPH Computer Graphics (1998)

    Google Scholar 

  30. Luo, S., Hu, W.: Diffusion probabilistic models for 3D point cloud generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2837–2845 (2021)

    Google Scholar 

  31. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)

    Article  Google Scholar 

  32. Mittal, P., Cheng, Y.C., Singh, M., Tulsiani, S.: Autosdf: shape priors for 3D completion, reconstruction and generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 306–315 (2022)

    Google Scholar 

  33. Müller, N., Siddiqui, Y., Porzi, L., Bulo, S.R., Kontschieder, P., Nießner, M.: DiffRF: rendering-guided 3d radiance field diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4328–4338 (2023)

    Google Scholar 

  34. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 165–174 (2019)

    Google Scholar 

  35. Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., Geiger, A.: Convolutional occupancy networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 523–540. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_31

    Chapter  Google Scholar 

  36. Poole, B., Jain, A., Barron, J.T., Mildenhall, B.: Dreamfusion: text-to-3d using 2d diffusion. arXiv preprint arXiv:2209.14988 (2022)

  37. Qin, Z., et al.: The devil in linear transformer. arXiv preprint arXiv:2210.10340 (2022)

  38. Qin, Z., et al.: Scaling transnormer to 175 billion parameters. arXiv preprint arXiv:2307.14995 (2023)

  39. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  40. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.061251(2), 3 (2022)

  41. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)

    Google Scholar 

  42. Shu, D.W., Park, S.W., Kwon, J.: 3D point cloud generative adversarial network based on tree structured graph convolutions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3859–3868 (2019)

    Google Scholar 

  43. Shue, J.R., Chan, E.R., Po, R., Ankner, Z., Wu, J., Wetzstein, G.: 3D neural field generation using triplane diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20875–20886 (2023)

    Google Scholar 

  44. Sun, X., et al.: Pix3D: dataset and methods for single-image 3D shape modeling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2974–2983 (2018)

    Google Scholar 

  45. Tan, Q., Gao, L., Lai, Y.K., Xia, S.: Variational autoencoders for deforming 3d mesh models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5841–5850 (2018)

    Google Scholar 

  46. Vahdat, A., Williams, F., Gojcic, Z., Litany, O., Fidler, S., Kreis, K., et al.: LION: latent point diffusion models for 3D shape generation. Adv. Neural Inf. Process. Syst. 35, 10021–10039 (2022)

    Google Scholar 

  47. Wang, T., et al.: Rodin: a generative model for sculpting 3d digital avatars using diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4563–4573 (2023)

    Google Scholar 

  48. Wu, J., Zhang, C., Xue, T., Freeman, B., Tenenbaum, J.: Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling. Adv. Neural Inf. Process. Syst. 29 (2016)

    Google Scholar 

  49. Wu, Z., et al.: Blockfusion: expandable 3d scene generation using latent tri-plane extrapolation. arXiv preprint arXiv:2401.17053 (2024)

  50. Xie, H., Yao, H., Sun, X., Zhou, S., Zhang, S.: Pix2Vox: context-aware 3D reconstruction from single and multi-view images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2690–2698 (2019)

    Google Scholar 

  51. Xie, J., Xu, Y., Zheng, Z., Zhu, S.C., Wu, Y.N.: Generative pointnet: deep energy-based learning on unordered point sets for 3D generation, reconstruction and classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14976–14985 (2021)

    Google Scholar 

  52. Xu, Q., Wang, W., Ceylan, D., Mech, R., Neumann, U.: DISN: deep implicit surface network for high-quality single-view 3D reconstruction. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  53. Yan, X., Lin, L., Mitra, N.J., Lischinski, D., Cohen-Or, D., Huang, H.: Shapeformer: transformer-based shape completion via sparse representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6239–6249 (2022)

    Google Scholar 

  54. Yang, G., Huang, X., Hao, Z., Liu, M.Y., Belongie, S., Hariharan, B.: Pointflow: 3D point cloud generation with continuous normalizing flows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4541–4550 (2019)

    Google Scholar 

  55. Yariv, L., Puny, O., Gafni, O., Lipman, Y.: Mosaic-SDF for 3D generative models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4630–4639 (2024)

    Google Scholar 

  56. Yu, X., Rao, Y., Wang, Z., Liu, Z., Lu, J., Zhou, J.: Pointr: diverse point cloud completion with geometry-aware transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12498–12507 (2021)

    Google Scholar 

  57. Zhang, B., Nießner, M., Wonka, P.: 3DILG: irregular latent grids for 3D generative modeling. Adv. Neural Inf. Process. Syst. 35, 21871–21885 (2022)

    Google Scholar 

  58. Zhang, B., Tang, J., Niessner, M., Wonka, P.: 3Dshape2VecSet: a 3D shape representation for neural fields and generative diffusion models. ACM Trans. Graph. (TOG) 42(4), 1–16 (2023)

    Google Scholar 

  59. Zhang, B., Wonka, P.: Functional diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4723–4732 (2024)

    Google Scholar 

  60. Zheng, X.Y., Pan, H., Wang, P.S., Tong, X., Liu, Y., Shum, H.Y.: Locally attentional SDF diffusion for controllable 3D shape generation. ACM Trans. Graph. (ToG) 42(4), 1–13 (2023)

    Article  Google Scholar 

  61. Zheng, X., Liu, Y., Wang, P., Tong, X.: SDF‐StyleGAN: implicit SDF‐based StyleGAN for 3D shape generation. In: Computer Graphics Forum, vol. 41, pp. 52–63. Wiley Online Library (2022)

    Google Scholar 

  62. Zhou, H., et al.: SeedFormer: patch seeds based point cloud completion with upsample transformer. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. ECCV 2022. LNCS, vol. 13663, pp. 416–432. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20062-5_24

  63. Zhou, L., Du, Y., Wu, J.: 3D shape generation and completion through point-voxel diffusion. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5826–5835 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weizhe Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, R. et al. (2025). NeuSDFusion: A Spatial-Aware Generative Model for 3D Shape Completion, Reconstruction, and Generation. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15077. Springer, Cham. https://doi.org/10.1007/978-3-031-72655-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72655-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72654-5

  • Online ISBN: 978-3-031-72655-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics