Skip to main content

COIN-Matting: Confounder Intervention for Image Matting

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15077))

Included in the following conference series:

  • 260 Accesses

Abstract

Deep learning methods have significantly advanced the performance of image matting. However, dataset biases can mislead the matting models to biased behavior. In this paper, we identify the two typical biases in existing matting models, specifically contrast bias and transparency bias, and discuss their origins in matting datasets. To address these biases, we model the image matting task from the perspective of causal inference and identify the root causes of these biases: the confounders. To mitigate the effects of these confounders, we employ causal intervention through backdoor adjustment and introduce a novel model-agnostic cofounder intervened (COIN) matting framework. Extensive experiments across various matting methods and datasets have demonstrated that our COIN framework can significantly diminish such biases, thereby enhancing the performance of existing matting models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cai, H., Xue, F., Xu, L., Guo, L.: Transmatting: enhancing transparent objects matting with transformers. In: ECCV 2022, pp. 253–269. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-19818-2_15

  2. Chen, J., Li, X., Luo, L., Ma, J.: Multi-focus image fusion based on multi-scale gradients and image matting. IEEE Trans. Multim. 24, 655–667 (2022)

    Article  Google Scholar 

  3. Dai, Y., Lu, H., Shen, C.: Learning affinity-aware upsampling for deep image matting. In: CVPR (2021)

    Google Scholar 

  4. Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting robustness of image matting with context assembling and strong data augmentation. In: CVPR (2022)

    Google Scholar 

  5. Deng, J., Xu, Y., Zhou, Z., He, S.: Background matting via recursive excitation. In: ICME (2022)

    Google Scholar 

  6. Ding, H., Zhang, H., Liu, C., Jiang, X.: Deep interactive image matting with feature propagation. IEEE Trans. Image Process. 31, 2421–2432 (2022)

    Article  Google Scholar 

  7. Everingham, M., Gool, L.V., Williams, C.K.I., Winn, J.M., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88, 303–338 (2010)

    Article  Google Scholar 

  8. Fang, X., Zhang, S., Chen, T., Wu, X., Shamir, A., Hu, S.: User-guided deep human image matting using arbitrary trimaps. IEEE Trans. Image Process. 31, 2040–2052 (2022)

    Article  Google Scholar 

  9. Hou, Q., Liu, F.: Context-aware image matting for simultaneous foreground and alpha estimation. In: ICCV (2019)

    Google Scholar 

  10. Li, J., Niu, L., Zhang, L.: Knowledge proxy intervention for deconfounded video question answering. In: ICCV (2023)

    Google Scholar 

  11. Li, J., et al.: Video semantic segmentation via sparse temporal transformer. In: ACM MM (2021)

    Google Scholar 

  12. Li, J., Zhang, J., Tao, D.: Deep automatic natural image matting. In: IJCAI (2021)

    Google Scholar 

  13. Li, J., Zhang, J., Tao, D.: Referring image matting. In: Proceedings of the IEEE Computer Vision and Pattern Recognition (2023)

    Google Scholar 

  14. Li, Y., Lu, H.: Natural image matting via guided contextual attention. In: AAAI (2020)

    Google Scholar 

  15. Li, Y., Wang, X., Xiao, J., Chua, T.: Equivariant and invariant grounding for video question answering. In: ACM MM (2022)

    Google Scholar 

  16. Lin, S., Ryabtsev, A., Sengupta, S., Curless, B.L., Seitz, S.M., Kemelmacher-Shlizerman, I.: Real-time high-resolution background matting. In: CVPR (2021)

    Google Scholar 

  17. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  18. Liu, Y., Xie, J., Qiao, Y., Tang, Y., Yang, X.: Prior-induced information alignment for image matting. IEEE Trans. Multim. 24, 2727–2738 (2022)

    Article  Google Scholar 

  19. Liu, Z., et al.: Swin transformer v2: scaling up capacity and resolution. In: CVPR (2022)

    Google Scholar 

  20. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV (2021)

    Google Scholar 

  21. Lu, H., Dai, Y., Shen, C., Xu, S.: Indices matter: learning to index for deep image matting. In: ICCV (2019)

    Google Scholar 

  22. Lu, L., Li, J., Cao, J., Niu, L., Zhang, L.: Painterly image harmonization using diffusion model. In: ACM MM (2023)

    Google Scholar 

  23. Lutz, S., Amplianitis, K., Smolic, A.: Alphagan: generative adversarial networks for natural image matting. In: BMVC (2018)

    Google Scholar 

  24. Niu, Y., Tang, K., Zhang, H., Lu, Z., Hua, X., Wen, J.: Counterfactual VQA: a cause-effect look at language bias. In: CVPR (2021)

    Google Scholar 

  25. Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: Matteformer: transformer-based image matting via prior-tokens. In: CVPR (2022)

    Google Scholar 

  26. Park, K., Woo, S., Oh, S.W., Kweon, I.S., Lee, J.Y.: Mask-guided matting in the wild. In: CVPR (2023)

    Google Scholar 

  27. Pearl, J., Glymour, M., Jewell, N.P.: Causal inference in statistics: a primer (2016)

    Google Scholar 

  28. Pearl, J., Mackenzie, D.: The Book of Why: The New Science of Cause and Effect. Basic Books, Inc., New York (2018)

    Google Scholar 

  29. Rubin, D.B.: Essential concepts of causal inference: a remarkable history and an intriguing future. Biostat. Epidemiol. 3, 140–155 (2019)

    Article  Google Scholar 

  30. Sengupta, S., Jayaram, V., Curless, B., Seitz, S.M., Kemelmacher-Shlizerman, I.: Background matting: the world is your green screen. In: CVPR (2020)

    Google Scholar 

  31. Sharma, G., Wu, W., Dalal, E.N.: The ciede2000 color-difference formula: implementation notes, supplementary test data, and mathematical observations. Color Res. Appl. 30, 21–30 (2005). https://api.semanticscholar.org/CorpusID:29119937

  32. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  Google Scholar 

  33. Sun, Y., Tang, C., Tai, Y.: Ultrahigh resolution image/video matting with spatio-temporal sparsity. In: CVPR (2023)

    Google Scholar 

  34. Tan, L., Li, J., Niu, L., Zhang, L.: Deep image harmonization in dual color spaces. In: ACM MM (2023)

    Google Scholar 

  35. Wang, T., Zhou, C., Sun, Q., Zhang, H.: Causal attention for unbiased visual recognition. In: ICCV (2021)

    Google Scholar 

  36. Wang, W., Feng, F., He, X., Zhang, H., Chua, T.S.: Clicks can be cheating: counterfactual recommendation for mitigating clickbait issue (2020)

    Google Scholar 

  37. Wei, T., et al.: Deep image matting with sparse user interactions. TPAMI (2024)

    Google Scholar 

  38. Wu, J., Zhang, C., Li, Z., Fu, H., Peng, X., Zhou, J.T.: dugMatting: decomposed-uncertainty-guided matting. In: ICML (2023)

    Google Scholar 

  39. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: ICML (2015)

    Google Scholar 

  40. Xu, N., Price, B.L., Cohen, S., Huang, T.S.: Deep image matting. In: CVPR (2017)

    Google Scholar 

  41. Yao, J., Wang, X., Yang, S., Wang, B.: Vitmatte: boosting image matting with pre-trained plain vision transformers. Inf. Fusion 103, 102091 (2024)

    Article  Google Scholar 

  42. Ye, Z., Dai, Y., Hong, C., Cao, Z., Lu, H.: Infusing definiteness into randomness: rethinking composition styles for deep image matting. In: AAAI (2023)

    Google Scholar 

  43. Yu, Q., et al.: Mask guided matting via progressive refinement network. In: CVPR (2021)

    Google Scholar 

  44. Zhang, D., Zhang, H., Tang, J., Hua, X., Sun, Q.: Causal intervention for weakly-supervised semantic segmentation. In: NeurIPS (2020)

    Google Scholar 

  45. Zhu, Q., Zhang, W.N., Liu, T., Wang, W.Y.: Counterfactual off-policy training for neural dialogue generation. In: EMNLP (2020)

    Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant No. 62076162), the Shanghai Municipal Science and Technology Major Project, China (Grant No. 2021SHZDZX0102) and the Postdoctoral Fellowship Program of CPSF (Grant No. GZC20241225).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Niu or Liqing Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 33743 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liao, Z. et al. (2025). COIN-Matting: Confounder Intervention for Image Matting. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15077. Springer, Cham. https://doi.org/10.1007/978-3-031-72655-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72655-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72654-5

  • Online ISBN: 978-3-031-72655-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics